Skip to main content

Advertisement

Log in

Automated lesion annotation during pulmonary vein isolation: influence on acute isolation rates and lesion characteristics

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Recovery of pulmonary vein (PV) conduction is a common mechanism of atrial fibrillation recurrence after PV isolation (PVI), underscoring the need for durable lesion formation. We aimed to evaluate the utility of an automated lesion annotation algorithm (ALAA) on acute isolation rates and resulting lesion characteristics.

Methods

Fifty patients underwent PVI using a contact force (CF) sensing catheter and ALAA. Single antral circles around ipsilateral PVs were performed with ALAA-1 settings including catheter stability (range of motion ≤2 mm, duration >10 s). Target CF was 10–20 g but not part of ALAA-1 settings. If PV conduction persisted after circle completion, force over time was added to automated settings (ALAA-2). Emerging gaps were subsequently ablated, followed by re-assessment for PVI.

Results

ALAA-1 isolated 70 % of the left and 78 % of the right PVs using 756.3 ± 212.3 s (left) and 737.1 ± 145.9 s (right) of energy delivery. ALAA-2 settings identified 29 gaps in previously unisolated PVs, closure significantly increased isolation rates to 88 % of the left and 96 % of the right PVs with additional 325.4 ± 354.1 s (left) and 266.8 ± 279.5 s (right) of energy delivery (p = 0.001). Lesion characteristics significantly differed between ALAA-1 (n = 3521 lesions) and ALAA-2 (n = 3037 lesions) settings, and between isolated and non-isolated PV segments, particularly with respect to CF. Interlesion distances with ALAA-2 were significantly longer in the left superior, left superior-anterior, and right superior-posterior segments when compared to ALAA-1.

Conclusions

Settings of an ALAA affect lesion characteristics reveal areas of insufficient lesion formation and influence acute effectiveness of PVI. Combination of CF and stability shows superior performance over stability alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and resarch design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Europace. 2012;14:528–606.

    Article  PubMed  Google Scholar 

  2. Themisoclakis S, Raviele A, China P, Pappone C, De Ponti R, Revishvili A, et al. Prospective European survey on atrial fibrillation ablation: clinical characteristics of patients and ablation strategies used in different countries. J Cardiovasc Electrophysiol. 2014;25:1074–81.

    Article  Google Scholar 

  3. Verma A, Kilicaslan F, Pisano E, Marrouche NF, Fanelli R, Brachmann J, et al. Response of atrial fibrillation to pulmonary vein antrum isolation is directly related to resumption and delay of pulmonary vein conduction. Circulation. 2005;11:627–35.

    Article  Google Scholar 

  4. Ouyang F, Antz M, Ernst S, Hachiya H, Mavrakis H, Deger FT, et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation. 2005;111:127–35.

    Article  PubMed  Google Scholar 

  5. Kuck KH, Reddy VY, Schmidt B, Natale A, Neuzil P, Saoudi N, et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm. 2012;9:18–23.

    Article  PubMed  Google Scholar 

  6. Neuzil P, Reddy VY, Kautzner J, Petru J, Wichterle D, Shah D, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013;6:327–33.

    Article  PubMed  Google Scholar 

  7. Schluermann F, Krauss T, Biermann J, Hartmann M, Trolese L, Pache G, et al. In vivo contact force measurements and correlation with left atrial anatomy during catheter ablation of atrial fibrillation. Europace. 2015;17:1526–32.

    Article  PubMed  Google Scholar 

  8. Reddy VY, Shah D, Kautzner J, Schmidt B, Saoudi N, Herrera C, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012;9:789–95.

    Article  Google Scholar 

  9. Kimura M, Sasaki S, Owada S, Horiuchi D, Sasaki K, Itoh T, et al. Comparison of lesion formation between contact force-guided and non-guided circumferential pulmonary vein isolation: a prospective, randomized study. Heart Rhythm. 2014;11:984–91.

    Article  PubMed  Google Scholar 

  10. Marijon E, Fazaa S, Narayanan K, Guy-Moyat B, Bouzeman A, Providencia R, et al. Real-time contact force sensing for pulmonary vein isolation in the setting of paroxysmal atrial fibrillation: procedural and 1-year results. J Cardiovasc Electrophysiol. 2013;25:130–7.

    Article  PubMed  Google Scholar 

  11. Anter E, Tschabrunn CM, Contreras-Valdes FM, Buxton AE, Josephson ME. Radiofrequency ablation annotation algorithm reduces the incidence of linear gaps and reconnection after pulmonary vein isolation. Heart Rhythm. 2014;11:783–90.

    Article  PubMed  Google Scholar 

  12. Biermann J, Bode C, Asbach S. Intracardiac echocardiography during catheter-based ablation of atrial fibrillation. Cardiol Res Pract. 2012;2012:921746.

    PubMed  PubMed Central  Google Scholar 

  13. Yokoyama K, Nakagawa H, Shah D, Lambert H, Leo G, Aeby N, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop an thrombus. Circ Arrhythm Electrophysiol. 2008;1:354–62.

    Article  PubMed  Google Scholar 

  14. Thiagalingam A, D’Avila A, Foley L, Guerrero JL, Lambert H, Leo G, et al. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter. J Cardiovasc Electrophysiol. 2010;21:806–11.

    PubMed  Google Scholar 

  15. Ikeda A, Nakagawa H, Lambert H, Shah DC, Fonck E, Yulzari A, et al. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size. Circ Arrhythm Electrophysiol. 2014;7:1174–80.

    Article  PubMed  Google Scholar 

  16. Nakagawa H, Kautzner J, Natale A, Peichl P, Cihak R, Wichterle D, et al. Locations of high contact force during left atrial mapping in atrial fibrillation patients: electrogram amplitude and impedance are poor predictors of electrode-tissue contact force for ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2013;6:746–53.

    Article  PubMed  Google Scholar 

  17. Andrade JG, Monir G, Pollak SJ, Khairy P, Dubuc M, Roy D, et al. Pulmonary vein isolation using “contact force” ablation: the effect on dormant conduction and long-term freedom from recurrent atrial fibrillation-a prospective study. Heart Rhythm. 2014;11:1919–24.

    Article  PubMed  Google Scholar 

  18. Natale A, Reddy VY, Monir G, Wilber DJ, Lindsay BD, McElderry HT, et al. Paroxysmal AF catheter ablation with a contact force sensing catheter. Results of the prospective, multicenter SMART-AF trial. J Am Coll Cardiol. 2014;64:647–56.

    Article  PubMed  Google Scholar 

  19. Makimoto H, Lin T, Rillig A, Metzner A, Wohlmuth P, Arya A, et al. In vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:46–54.

    Article  PubMed  Google Scholar 

  20. Park C, Lehrmann H, Keyl C, Weber R, Schiebeling J, Allgeier J, et al. Mechanisms of pulmonary vein reconnection after radiofrequency ablation of atrial fibrillation: the deterministic role of contact force and interlesion distance. J Cardiovasc Electrophysiol. 2014;25:701–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Asbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asbach, S., Lang, C., Trolese, L. et al. Automated lesion annotation during pulmonary vein isolation: influence on acute isolation rates and lesion characteristics. J Interv Card Electrophysiol 47, 349–356 (2016). https://doi.org/10.1007/s10840-016-0173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-016-0173-y

Keywords

Navigation