Skip to main content
Log in

Radiation tolerance of contemporary implantable cardioverter-defibrillators

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Implantable cardioverter-defibrillators (ICDs) are complex instruments using integrated circuit technology. Previous studies suggested risk to the device when exposed to a radiation environment. Little data is available on contemporary ICD systems.

Objectives

The purpose of the present study was to assess the ability of contemporary ICD designs to resist the damaging effects of direct exposure to therapeutic doses of radiation.

Methods

Four contemporary ICDs and four legacy ICDs devices were exposed to escalating doses of photon irradiation (XRT) from a 6-MV linear accelerator. Escalating doses were administered over 8 days to a maximum cumulative dose of 131.11 Gy or catastrophic failure.

Results

Each legacy device had catastrophic failure following the 6th XRT session, characterized by failure to deliver shock therapy. All four contemporary devices remained fully functional following the 8th and final XRT session (P = 0.03). The cumulative, survived radiation dose was significantly different between the contemporary and legacy groups (131.11 vs. 41.11 Gy, P = 0.01). Changes seen in the legacy devices were sudden and not anticipated by trends in prior sessions.

Conclusion

The results of this study suggest that contemporary ICD designs may be more robust than earlier designs in a radiation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Last, A. (1998). Radiotherapy in patients with cardiac pacemakers. British Journal of Radiology, 71(841), 4–10.

    CAS  PubMed  Google Scholar 

  2. Quertermous, T., Megahy, M. S., Das Gupta, D. S., & Griem, M. L. (1983). Pacemaker failure resulting from radiation damage. Radiology, 148(1), 257–258.

    CAS  PubMed  Google Scholar 

  3. Hurkmans, C. W., Scheepers, E., Springorum, B. G. F., & Uiterwaal, H. (2005). Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. International Journal of Radiation Oncology, Biology, and Physics, 63(1), 282–289.

    Article  Google Scholar 

  4. Lewin, A. A., Serago, C. F., Schwade, J. G., Abitbol, A. A., & Margolis, S. C. (1984). Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication. International Journal of Radiation Oncology, Biology, and Physics, 10(10), 1967–1969.

    Article  CAS  Google Scholar 

  5. Katzenberg, C. A., Marcus, F. I., Heusinkveld, R. S., & Mammana, R. B. (1982). Pacemaker failure due to radiation therapy. Pacing and Clinical Electrophysiology, 5(2), 156–159.

    Article  CAS  PubMed  Google Scholar 

  6. Raitt, M. H., Stelzer, K. J., Laramore, G. E., Bardy, G. H., Dolack, G. L., Poole, J. E., et al. (1994). Runaway pacemaker during high-energy neutron radiation therapy. Chest, 106(3), 955–957.

    Article  CAS  PubMed  Google Scholar 

  7. Adamec, R., Haefliger, J. M., Killisch, J. P., Niederer, J., & Jaquet, P. (1982). Damaging effect of therapeutic radiation on programmable pacemakers. Pacing and Clinical Electrophysiology, 5(2), 146–150.

    Article  CAS  PubMed  Google Scholar 

  8. Venselaar, J. L., Van Kerkoerle, H. L., & Vet, A. J. (1987). Radiation damage to pacemakers from radiotherapy. Pacing and Clinical Electrophysiology, 10(3 Pt 1), 538–542.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez, F., Filimonov, A., Henning, A., Coughlin, C., & Greenberg, M. (1991). Radiation-induced effects in multiprogrammable pacemakers and implantable defibrillators. Pacing and Clinical Electrophysiology, 14(12), 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  10. Souliman, S. K., & Christie, J. (1994). Pacemaker failure induced by radiotherapy. Pacing and Clinical Electrophysiology, 17(3 Pt 1), 270–273.

    Article  CAS  PubMed  Google Scholar 

  11. Mouton, J., Haug, R., Bridier, A., Dodinot, B., & Eschwege, F. (2002). Influence of high-energy photon beam irradiation on pacemaker operation. Physics in Medicine and Biology, 47(16), 2879–2893.

    Article  CAS  PubMed  Google Scholar 

  12. Hurkmans, C. W., Scheepers, E., Springorum, B. G. F., & Uiterwaal, H. (2005). Influence of radiotherapy on the latest generation of pacemakers. Radiotherapy and Oncology, 76(1), 93–98.

    Article  PubMed  Google Scholar 

  13. Elders, J., Kunze-Busch, M., Jan Smeenk, R., & Smeets, J. L. R. M. (2013). High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors. Europace, 15(1), 60–65.

    Article  PubMed  Google Scholar 

  14. Hekmat, K., Salemink, B., Lauterbach, G., Schwinger, R. H. G., Sudkamp, M., Weber, H. J., et al. (2004). Interference by cellular phones with permanent implanted pacemakers: an update. Europace, 6(4), 363–369.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrick, A. M., Bernstein, N., Aizer, A., & Chinitz, L. (2008). Cosmic radiation induced software electrical resets in ICDs during air travel. Heart Rhythm, 5(8), 1201–1203.

    Article  PubMed  Google Scholar 

  16. Wadasadawala, T., Pandey, A., Agarwal, J. P., Jalali, R., Laskar, S. G., Chowdhary, S., et al. (2011). Radiation therapy with implanted cardiac pacemaker devices: a clinical and dosimetric analysis of patients and proposed precautions. Clinical Oncology (Royal College of Radiologists), 23(2), 79–85.

    Article  CAS  Google Scholar 

  17. Marbach, J. R., Sontag, M. R., Van Dyk, J., & Wolbarst, A. B. (1994). Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Medical Physics, e(1), 85–90.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jim Gilkerson, Tim Obrecht, and Scott Stubbs of Boston Scientific, Inc., for their technical assistance with the study.

Disclosures

M. Mollerus has received research grants from Boston Scientific and Medtronic. He also has intellectual property in signal processing and rhythm discrimination. He is an unpaid consultant for Boston Scientific and Medtronic. There are no other disclosures.

Funding

This study received a grant from Boston Scientific, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mollerus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollerus, M., Naslund, L., Lipinski, M. et al. Radiation tolerance of contemporary implantable cardioverter-defibrillators. J Interv Card Electrophysiol 39, 171–175 (2014). https://doi.org/10.1007/s10840-013-9861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9861-z

Keywords

Navigation