Skip to main content
Log in

High-energy defibrillation increases the dispersion of regional ventricular repolarization

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the effects of shock energy on the dispersion of regional ventricular repolarization (DRVR), post-shock rhythm and sinus recovery time (SRT), and the relationship between DRVR and post-shock ventricular arrhythmias.

Materials and methods

Ten open-chest dogs were anesthetized. Ventricular fibrillation (VF) was electrically induced and recorded from a 6 × 6 unipolar electrode plaque (4 mm spacing) sutured on the left ventricular epicardium. Defibrillation threshold (DFT) was determined after 20 s of VF. DRVR was measured before VF, during the earliest post-shock sinus rhythm, and during sinus rhythm 30 s following shocks. Post-shock rhythm and SRT were evaluated after energies of 100% DFT, 125% DFT, 175% DFT, and 250% DFT.

Results

In the100% DFT group, the DRVR of the earliest sinus rhythm and 30 s after successful defibrillation was not significantly different than that before VF. But the DRVRs were significantly increased in 125% DFT, 175% DFT, and 250% DFT group. DRVR after defibrillation in the 250% DFT group was higher than those in the 100% DFT and 125% DFT groups. SRT in the 250% DFT group was significantly longer than that in the other groups .The incidence of post-shock ventricular tachycardia was increased when a high-shock energy was applied (P = 0.041).

Conclusion

DRVR was increased by application of high-energy defibrillation associated with SRT prolongation. The increased DRVR may play an important role in the onset of post-shock ventricular tachycardia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fromer, M., Brachmann, J., Block, M., Siebels, J., Hoffmann, E., Almendral, J., et al. (1992). Efficacy of automatic multimodal device therapy for ventricular tachyarrhythmias as delivered by a new implantable pacing cardioverter-defibrillator. Results of a European multicenter study of 102 implants. Circulation, 86(2), 363–374.

    PubMed  CAS  Google Scholar 

  2. Fogoros, R. N., Elson, J. J., Bonnet, C. A., Fiedler, S. B., & Burkholder, J. A. (1990). Efficacy of the automatic implantable cardioverter-defibrillator in prolonging survival in patients with severe underlying cardiac disease. Journal of the American College of Cardiology, 16(2), 381–386.

    Article  PubMed  CAS  Google Scholar 

  3. Bardy, G. H., Lee, K. L., Mark, D. B., Poole, J. E., Packer, D. L., Boineau, R., et al. (2005). Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. The New England Journal of Medicine, 352(3), 225–237.

    Article  PubMed  CAS  Google Scholar 

  4. Poole, J. E., Johnson, G. W., Hellkamp, A. S., Anderson, J., Callans, D. J., Raitt, M. H., et al. (2008). Prognostic importance of defibrillator shocks in patients with heart failure. The New England Journal of Medicine, 359(10), 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  5. Topaloglu, S., Aras, D., Sahin, O., Ergun, K., Deveci, B., Ozdemir, O., et al. (2007). QT dispersion significantly increases after implantable cardioverter-defibrillator shocks. Annals of Noninvasive Electrocardiology, 12(1), 44–49.

    Article  PubMed  Google Scholar 

  6. Goktekin, O., Melek, M., Gorenek, B., Birdane, A., Kudaiberdieva, G., Cavusoglu, Y., et al. (2002). Cardiac troponin T and cardiac enzymes after external transthoracic cardioversion of ventricular arrhythmias in patients with coronary artery disease. Chest, 122(6), 2050–2054.

    Article  PubMed  CAS  Google Scholar 

  7. Dixon, E. G., Tang, A. S., Wolf, P. D., Meador, J. T., Fine, M. J., Calfee, R. V., et al. (1987). Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation, 76(5), 1176–1184.

    Article  PubMed  CAS  Google Scholar 

  8. Tokano, T., Bach, D., Chang, J., Davis, J., Souza, J. J., Zivin, A., et al. (1998). Effect of ventricular shock strength on cardiac hemodynamics. Journal of Cardiovascular Electrophysiology, 9(8), 791–797.

    Article  PubMed  CAS  Google Scholar 

  9. Huang, J., Skinner, J. L., Rogers, J. M., Smith, W. M., Holman, W. L., & Ideker, R. E. (2002). The effects of acute and chronic amiodarone on activation patterns and defibrillation threshold during ventricular fibrillation in dogs. Journal of the American College of Cardiology, 40(2), 375–383.

    Article  PubMed  CAS  Google Scholar 

  10. Wu, T. J., Lin, S. F., Hsieh, Y. C., Chen, P. S., & Ting, C. T. (2008). Early recurrence of ventricular fibrillation after successful defibrillation during prolonged global ischemia in isolated rabbit hearts. Journal of Cardiovascular Electrophysiology, 19(2), 203–210.

    Article  PubMed  Google Scholar 

  11. Nikolski, V. P., Sambelashvili, A. T., Krinsky, V. I., & Efimov, I. R. (2004). Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. American Journal of Physiology. Heart and Circulatory Physiology, 286(1), H412–H418.

    Article  PubMed  CAS  Google Scholar 

  12. Schluter, T., Baum, H., Plewan, A., & Neumeier, D. (2001). Effects of implantable cardioverter defibrillator implantation and shock application on biochemical markers of myocardial damage. Clinical Chemistry, 47(3), 459–463.

    PubMed  CAS  Google Scholar 

  13. Cates, A. W., Wolf, P. D., Hillsley, R. E., Souza, J. J., Smith, W. M., & Ideker, R. E. (1994). The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength. Pacing and Clinical Electrophysiology, 17(7), 1208–1217.

    Article  PubMed  CAS  Google Scholar 

  14. Gold, M. R., Higgins, S., Klein, R., Gilliam, F. R., Kopelman, H., Hessen, S., et al. (2002). Efficacy and temporal stability of reduced safety margins for ventricular defibrillation: primary results from the Low Energy Safety Study (LESS). Circulation, 105(17), 2043–2048.

    Article  PubMed  Google Scholar 

  15. Strickberger, S. A., Daoud, E. G., Davidson, T., Weiss, R., Bogun, F., Knight, B. P., et al. (1997). Probability of successful defibrillation at multiples of the defibrillation energy requirement in patients with an implantable defibrillator. Circulation, 96(4), 1217–1223.

    PubMed  CAS  Google Scholar 

  16. Yabe, S., Smith, W. M., Daubert, J. P., Wolf, P. D., Rollins, D. L., & Ideker, R. E. (1990). Conduction disturbances caused by high current density electric fields. Circulation Research, 66(5), 1190–1203.

    PubMed  CAS  Google Scholar 

  17. Chen, P. S., Shibata, N., Dixon, E. G., Wolf, P. D., Danieley, N. D., Sweeney, M. B., et al. (1986). Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. Journal of Clinical Investigation, 77(3), 810–823.

    Article  PubMed  CAS  Google Scholar 

  18. Cheek, E. R., & Fast, V. G. (2004). Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Circulation Research, 94(2), 208–214.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou, X., Daubert, J. P., Wolf, P. D., Smith, W. M., & Ideker, R. E. (1993). Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circulation Research, 72(1), 145–160.

    PubMed  CAS  Google Scholar 

  20. Waldecker, B., Brugada, P., Zehender, M., Stevenson, W., & Wellens, H. J. (1986). Dysrhythmias after direct-current cardioversion. The American Journal of Cardiology, 57(1), 120–123.

    Article  PubMed  CAS  Google Scholar 

Download references

Grants

This study was supported in part by National Natural Science Foundation of China (No. 81070266, 81000081), Shanghai Science and Technology Committee Grants (No. 08140900600, 10140903100), and by Program for Innovative Research Team of Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Wu.

Additional information

Yang Pang, Qi Jin and Ning Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Y., Jin, Q., Zhang, N. et al. High-energy defibrillation increases the dispersion of regional ventricular repolarization. J Interv Card Electrophysiol 32, 81–86 (2011). https://doi.org/10.1007/s10840-011-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-011-9589-6

Keywords

Navigation