Skip to main content
Log in

Interpreting the Infinitesimal Mathematics of Leibniz and Euler

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

We apply Benacerraf’s distinction between mathematical ontology and mathematical practice (or the structures mathematicians use in practice) to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like Bos and Laugwitz seek to explore Eulerian methodology, practice, and procedures in a way more faithful to Euler’s own. Euler’s use of infinite integers and the associated infinite products are analyzed in the context of his infinite product decomposition for the sine function. Euler’s principle of cancellation is compared to the Leibnizian transcendental law of homogeneity. The Leibnizian law of continuity similarly finds echoes in Euler. We argue that Ferraro’s assumption that Euler worked with a classical notion of quantity is symptomatic of a post-Weierstrassian placement of Euler in the Archimedean track for the development of analysis, as well as a blurring of the distinction between the dual tracks noted by Bos. Interpreting Euler in an Archimedean conceptual framework obscures important aspects of Euler’s work. Such a framework is profitably replaced by a syntactically more versatile modern infinitesimal framework that provides better proxies for his inferential moves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually Leibniz referred to V.5; in some editions of the Elements this Definition does appear as V.5. Thus, Euclid (1660) as translated by Barrow in 1660 provides the following definition in V.V (the notation “V.V” is from Barrow’s translation): Those numbers are said to have a ratio betwixt them, which being multiplied may exceed one the other.

  2. We note, in the context of Leibniz’s reference to Archimedes, that there are other possible interpretations of the exhaustion method of Archimedes. The received interpretation, developed in Dijksterhuis (1987), is in terms of the limit concept of real analysis. However, Wallis (1685, 280–290) developed a different interpretation in terms of approximation by infinite-sided polygons. The ancient exhaustion method has two components:

    1. (1)

      geometric construction, consisting of approximation by some simple figure, e.g., a polygon or a line built of segments,

    2. (2)

      justification carried out in the theory of proportion as developed in Elements Book V.

    In the seventeenth century, mathematicians adopted the first component, and developed alternative justifications. The key feature is the method of exhaustion is the logical structure of its proof, namely reductio ad absurdum, rather than the nature of the background continuum. The latter can be Bernoullian, as Wallis’ interpretation shows.

  3. A technical comment on numerosities is in order. A numerosity is a finitely additive measure-like function defined on an algebra of sets, which takes values in the positive half of a non-Archimedean ordered ring. A numerosity is elementary if and only if it assigns the value 1 to every singleton in the domain, so that the numerosity of any finite set is then equal to its number of elements. Therefore any elementary numerosity can be viewed as a generalization of the notion of finite quantity. Numerosities are sometimes useful in studies related to Lebesgue-like and similar measures, where they help to “individualize” classically infinite measure values, associating them with concrete infinitely large elements of a chosen non-Archimedean ordered ring or field. As a concept of infinite quantity, numerosities have totally different properties, as well as a totally different field of applications, than the Cantorian cardinals.

  4. In the original Latin this reads as follows: “Verum ut ad propositum revertamus, etiamsi quis neget in mundo numerum infinitum revera existere; tamen in speculationibus mathematicis saepissime occurrunt questiones, ad quas, nisi numerus infinitus admittatur, responderi non posset.” Note that the Latin uses the subjunctive neget (rather than negat), which is the mode used for a “future less vivid” condition: not “even if someone denies” but rather “even if someone were to deny.”

  5. Leibniz applies his method in his de Quadratura Arithmetica to find the quadrature of general cycloidal segments (Edwards 1979, 251). Here also the calculation exploits the family of tangent lines.

  6. In the original Latin this reads as follows: “Sed quantitas infinite parva nil aliud est nisi quantitas evanescens, ideoque revera erit \(= 0\).” Note that the equality sign “\(=\)” and the digit “0” are both in the original. While Euler writes “revera erit \(= 0\)” in §83, in the next §84 the formulation is “revera esse cyphram.”

  7. To give an elementary example, the determination of the limit \(\mathop{\lim}\limits _{x\rightarrow 0} \frac{x+x^2}{x}\) in the \(\epsilon , \delta \) approach would involve first guessing the correct answer, \(L=1\), by using informal reasoning with small quantities; and then formally choosing a suitable \(\delta \) for every \(\epsilon \) in such a way that \(\frac{x+x^2}{x}\) turns out to be within \(\epsilon \) of L if \(|x|<\delta \).

  8. Note that Bos (1974) used the notation \(\underline{\text {d}}x\) for Leibniz’s (d)x.

  9. Indeed, via the total order, the element x defines a Dedekind cut on \({\mathbb R}\). By the usual procedure, the cut specifies a real number \(x_0\in {\mathbb R}\subseteq E\). The number \(x_0\) is infinitely close to \(x\in E\). The subring \(E_f\subseteq E\) consisting of the finite (i.e., limited) elements of E therefore admits a map \(\text {st}:E_f\rightarrow {\mathbb R},\;x\mapsto {}x_0\), called the standard part function, or shadow, whose role is to round off each finite (limited) x to the nearest real \(x_0\).

  10. This use of the term internal is not to be confused with its technical meaning in the context of enlargements of superstructures; see Goldblatt (1998).

  11. The transfer principle is a type of theorem that, depending on the context, asserts that rules, laws or procedures valid for a certain number system, still apply (i.e., are “transfered”) to an extended number system. Thus, the familiar extension \({\mathbb Q}\subseteq {\mathbb R}\) preserves the properties of an ordered field. To give a negative example, the extension \({\mathbb R}\subseteq {\mathbb R}\cup \{\pm \infty \}\) of the real numbers to the so-called extended reals does not preserve the properties of an ordered field. The hyperreal extension \({\mathbb R}\subseteq {}^*{\mathbb R}\) preserves all first-order properties, such as the identity \(\sin ^2 x + \cos ^2 x =1\) (valid for all hyperreal x, including infinitesimal and infinite values of \(x\in {}^*{\mathbb R}\)). For a more detailed discussion, see Keisler (1986).

  12. Historian Carl Boyer described Cantor, Dedekind, and Weierstrass as the great triumvirate in Boyer (1949, 298); the term serves as a humorous characterisation of both A-track scholars and their objects of adulation.

  13. The precise meaning of the modern term elementary function is discussed in McKinzie and Tuckey (1997, 43, footnote 23).

  14. Here the terms finite and infinite correspond to limited and infinitely large in the terminology of McKinzie and Tuckey (1997).

References

  • Arthur, R. (2008). Leery Bedfellows: Newton and Leibniz on the status of infinitesimals. In Ursula Goldenbaum & Douglas Jesseph (Eds.), Infinitesimal differences: Controversies between Leibniz and his contemporaries (pp. 7–30). Berlin and New York: de Gruyter.

    Google Scholar 

  • Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D. & Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904.

  • Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., et al. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.

    Article  Google Scholar 

  • Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D. & Sherry, D. (2016). Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 6(1), 117–147.

  • Beckmann, F. (1967/1968). Neue Gesichtspunkte zum 5. Buch Euklids. Archive for History Exact Sciences, 4, 1–144.

  • Bell, J. (2008). A primer of infinitesimal analysis (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73.

    Article  Google Scholar 

  • Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1), 50–67.

    Article  Google Scholar 

  • Berkeley, G. (1734). The analyst, a discourse addressed to an infidel mathematician.

  • Błaszczyk, P. (2013). A note on Otto Hölder’s treatise Die Axiome der Quantität und die Lehre vom Mass. Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticum Mathematicae V, 129–142 [In Polish].

  • Błaszczyk, P., Katz, M., & Sherry, D. (2013). Ten misconceptions from the history of analysis and their debunking. Foundations of Science, 18(1), 43–74.

  • Błaszczyk, P., Kanovei, V., Katz, M., & Sherry, D. (2016). Controversies in the foundations of analysis: Comments on Schubring’s conflicts. Foundations of Science. doi: 10.1007/s10699-015-9473-4. Online first.

  • Błaszczyk, P., Mrówka, K. (2013). Euklides, Elementy, Ksiegi V-VI. Tłumaczenie i komentarz [Euclid, Elements, Books V–VI. Translation and commentary]. Krakow: Copernicus.

  • Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276.

    Article  Google Scholar 

  • Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.

    Article  Google Scholar 

  • Bos, H. (2010). Private communication. Nov 2, 2010.

  • Boyer, C. (1949). The concepts of the calculus. New York: Hafner.

    Google Scholar 

  • Bradley, R., & Sandifer, C. (2009). Cauchy’s Cours d’analyse. An annotated translation. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

    Google Scholar 

  • Breger, H. (1992). Le continu chez Leibniz. Le labyrinthe du continu (Cerisy-la-Salle, 1990) (pp. 76–84). Paris: Springer.

    Google Scholar 

  • Carroll, M., Dougherty, S., & Perkins, D. (2013). Indivisibles, infinitesimals and a tale of seventeenth-century mathematics. Mathematics Magazine, 86(4), 239–254.

    Article  Google Scholar 

  • Cauchy, A.L. (1823). Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Paris, Imprimérie Royale, 1823. In Oeuvres complètes, Series 2, Vol. 4, pp. 9–261. Paris: Gauthier-Villars (1899).

  • Ciesielski, K., & Miller, D. (2016). A continuous tale on continuous and separately continuous functions. Real Analysis Exchange, 41(1), 19–54.

    Article  Google Scholar 

  • Clavius, C. (1589). Euclidis elementorum. Libri XV, Roma.

  • Dauben, J. (1980). The development of Cantorian set theory. In I. Grattan-Guinnes (Ed.), From the calculus to set theory, 1630–1910 (pp. 181–219). Princeton: Princeton University Press.

  • De Risi, V. (2016). The development of euclidean axiomatics. The systems of principles and the foundations of mathematics in editions of the elements from antiquity to the eighteenth century. Archive for History of Exact Science, online first. doi:10.1007/s00407-015-0173-9.

  • Di Nasso, M., & Forti, M. (2010). Numerosities of point sets over the real line. Transactions of the American Mathematical Society, 362(10), 5355–5371.

    Article  Google Scholar 

  • Dijksterhuis, D. (1987). Archimedes 1987. Princeton: Princeton University Press.

  • Edwards, C. H, Jr. (1979). The historical development of the calculus. New York/Heidelberg: Springer.

    Book  Google Scholar 

  • Edwards, H. (2007). Euler’s definition of the derivative. Bulletin of the American Mathematical Society (NS), 44(4), 575–580.

    Article  Google Scholar 

  • Edwards, H. (2015). Euler’s conception of the derivative. The Mathematical Intelligencer, 47(4), 52–53.

    Article  Google Scholar 

  • Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences, 60(1), 1–121.

    Article  Google Scholar 

  • Euclid. (1660). Euclide’s Elements, The whole Fifteen Books, compendiously Demonstrated. By Mr. Isaac Barrow Fellow of Trinity College in Cambridge. And Translated out of the Latin. London.

  • Euclid. (2007). Euclid’s Elements of Geometry. Edited, and provided with a modern English translation, by Richard Fitzpatrick. See http://farside.ph.utexas.edu/euclid.html

  • Euler, L. (1730–1731). De progressionibus trascendentibus seu quarum termini generales algebraice dari nequeunt. In Euler, Opera omnia (Series I, Opera Mathematica, Berlin, Bern, Leipzig, 1911–...), 14(1), 1–24.

  • Euler, L. (1748). Introductio in Analysin Infinitorum, Tomus primus. Saint Petersburg and Lausana.

  • Euler, L. (1755). Institutiones Calculi Differentialis. Saint Petersburg.

  • Euler, L. (1768–1770). Institutionum calculi integralis.

  • Euler, L. (1771). Vollständige Anleitung zur Algebra. St. Petersburg: Kaiserliche Akademie der Wissenschaften.

  • Euler, L. (1807). Éléments d’algèbre. Paris: Courcier.

    Google Scholar 

  • Euler, L. (1810). Elements of Algebra. Translated form the French with additions of La Grange, Johson and Co., London.

  • Euler, L. (1988). Introduction to analysis of the infinite. Book I. New York: Springer.

  • Euler, L. (2000). Foundations of Differential Calculus. New York: Springer.

  • Ferraro, G. (1998). Some aspects of Euler’s theory of series: Inexplicable functions and the Euler–Maclaurin summation formula. Historia Mathematica, 25(3), 290–317.

    Article  Google Scholar 

  • Ferraro, G. (2004). Differentials and differential coefficients in the Eulerian foundations of the calculus. Historia Mathematica, 31(1), 34–61.

    Article  Google Scholar 

  • Ferraro, G. (2007). Euler’s treatises on infinitesimal analysis: Introductio in analysin infinitorum, institutiones calculi differentialis, institutionum calculi integralis. In R. Baker (Ed.), Euler reconsidered (pp. 39–101). Heber City: Kendrick Press.

  • Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

    Google Scholar 

  • Ferraro, G. (2012). Euler, infinitesimals and limits. Manuscript (Feb 2012). See http://halshs.archives-ouvertes.fr/halshs-00657694

  • Ferraro, G., & Panza, M. (2003). Developing into series and returning from series: A note on the foundations of eighteenth-century analysis. Historia Mathematica, 30(1), 17–46.

    Article  Google Scholar 

  • Fraenkel, A. (1928). Einleitung in die Mengenlehre. Berlin: Springer.

  • Fraser, C. (1999). Book review: Paolo Mancosu. Philosophy of mathematics and mathematical practice in the seventeenth century. Notre Dame Journal of Formal Logic, 40(3), 447–454.

    Article  Google Scholar 

  • Fraser, C. (2015). Nonstandard analysis, infinitesimals, and the history of calculus. In D. Row & W. Horng (Eds.), A delicate balance: Global perspectives on innovation and tradition in the history of mathematics (pp. 25–49). Birkhäuser: Springer.

    Chapter  Google Scholar 

  • Gerhardt, C. I. (Ed.). (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.

  • Gödel, K. (1990). Collected Works. In Feferman, S., Dawson, J., Kleene, S., Moore, G., Solovay, R., & van Heijenoort, J. (Eds). Vol. II. New York: Oxford University Press.

  • Goldblatt, R. (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics 188. New York: Springer.

  • Gordon, E., Kusraev, A.&, Kutateladze, S. (2002). Infinitesimal analysis. Dordrecht: Kluwer.

  • Grant, E. (1974). The definitions of Book V of Euclid’s Elements in thirteenth-century version, and commentary. Campanus of Novara. In E. Grant (Ed.), A source book in medieval science (pp. 136–149). Cambridge, MA: Harvard University Press.

  • Gray, J. (2008a). Plato’s ghost. The modernist transformation of mathematics. Princeton: Princeton University Press.

  • Gray, J. (2008b). A short life of Euler. BSHM Bulletin, 23(1), 1–12.

    Article  Google Scholar 

  • Hacking, I. (2014). Why is there philosophy of mathematics at all? Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Heiberg, J. (1881). Archimedis Opera Omnia cum Archimedis Opera Omnia cum Commentariis Eutocii (Vol. I). Leipzig: Teubner.

    Google Scholar 

  • Heiberg, J. (1883–1888). Euclidis Elementa, Vol. I–V. Leipzig: Teubner.

  • Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-physikalische Classe, 53, 1–64.

  • Hölder, O. (1996). The axioms of quantity and the theory of measurement. Translated from the 1901 German original and with notes by Joel michell & Catherine Ernst. With an introduction by Michell. The Journal of Mathematical Psychology, 40(3), 235–252.

  • Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jesseph, D. (2015). Leibniz on the elimination of infinitesimals. In N. B. Goethe, P. Beeley & D. Rabouin (Eds.), G.W. Leibniz, Interrelations between mathematics and philosophy. Archimedes Series 41 (pp. 189–205). Berlin: Springer.

  • Kanovei, V. (1988). The correctness of Euler’s method for the factorization of the sine function into an infinite product. Russian Mathematical Surveys, 43, 65–94.

    Article  Google Scholar 

  • Kanovei, V., Katz, K., Katz, M., Nowik, T. (2016). Small oscillations of the pendulum, Euler’s method, and adequality. Quantum Studies: Mathematics and Foundations.

  • Kanovei, V., Katz, M., Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science 18(2), 259–296.

  • Kanovei, V., Katz, K., Katz, M., & Schaps, M. (2015). Proofs and retributions, Or: Why Sarah can’t take limits. Foundations of Science, 20(1), 1–25.

    Article  Google Scholar 

  • Kanovei, V., Katz, K., Katz, M., Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51.

  • Kanovei, V., & Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer Monographs in Mathematics. Berlin: Springer.

    Book  Google Scholar 

  • Katz, K., Katz, M. (2011). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452.

  • Katz, M., Schaps, D., Shnider, S. (2013). Almost equal: The method of adequality from diophantus to fermat and beyond. Perspectives on Science, 21(3), 283–324.

  • Katz, M., Sherry, D. (2012). “Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558.

  • Katz, M. & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625.

  • Katz, V. (2014). Review of “Bair et al., Is mathematical history written by the victors?” Notices American Mathematical Society, 60(7), 886–904.

  • Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach. Second Edition. Prindle, Weber & Schimidt, Boston. See online version at http://www.math.wisc.edu/~keisler/calc.html

  • Klein, F. (1932). Elementary Mathematics from an advanced standpoint. Vol. I.: Arithmetic, algebra, analysis. New York: Macmillan.

  • Kock, A. (2006). Synthetic differential geometry, 2nd edition. London Mathematical Society Lecture Note Series, 333. Cambridge: Cambridge University Press.

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1978). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. Mathematical Intelligencer, 1(3), 151–161.

  • Laugwitz, D. (1987a). Hidden lemmas in the early history of infinite series. Aequationes Mathematicae, 34, 264–276.

    Article  Google Scholar 

  • Laugwitz, D. (1987b). Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica, 14, 258–274.

    Article  Google Scholar 

  • Laugwitz, D. (1989). Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences, 39(3), 195–245.

    Article  Google Scholar 

  • Laugwitz, D. (1992). Leibniz’ principle and omega calculus. Le labyrinthe du continu (Cerisy-la-Salle, 1990) (pp. 144–154). Paris: Springer.

    Google Scholar 

  • Laugwitz, D. (1999). Bernhard Riemann (1826–1866). Turning points in the conception of mathematics. Boston: Birkhäuser Boston.

  • Leibniz, G. (1684). “Nova methodus pro maximis et minimis ...” in Acta Erud., Oct. 1684. See [Gerhardt 1850–1863], V, pp. 220–226.

  • Leibniz, G. (1695). To l’Hospital, 21 june 1695, in [Gerhardt 1850–1863], I, pp. 287–289.

  • Leibniz, G. (1702). To Varignon, 2 febr., 1702, in [Gerhardt 1850–1863] IV, pp. 91–95.

  • Leibniz, G. (1710). Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In [Gerhardt 1850–1863, vol. V, pp. 377–382].

  • l’Hôpital, G. (1696). Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes.

  • Luxemburg, W. (1973). What is nonstandard analysis? Papers in the foundations of mathematics. American Mathematical Monthly, 80(6, part II), 38–67.

  • Mancosu, P. (1996). Philosophy of mathematics and mathematical practice in the seventeenth century. New York: The Clarendon Press.

    Google Scholar 

  • Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic, 2(4), 612–646.

    Article  Google Scholar 

  • McKinzie, M., & Tuckey, C. (1997). Hidden lemmas in Euler’s summation of the reciprocals of the squares. Archive for History of Exact Sciences, 51, 29–57.

    Article  Google Scholar 

  • Mueller, I. (1981). Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge, MA: MIT Press.

  • Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.

    Article  Google Scholar 

  • Nieuwentijt, B. (1695). Analysis infinitorum, seu curvilineorum proprietates ex polygonorum natura deductae. Amsterdam.

  • Nowik, T., Katz, M. (2015). Differential geometry via infinitesimal displacements. Journal of Logic and Analysis, 7(5), 1–44.

  • Panza, M. (2007). Euler’s Introductio in analysin infinitorum and the program of algebraic analysis. In R. Backer (Ed.), Euler reconsidered (pp. 119–166). Heber City: Kendrick Press.

  • Pulte, H. (1998). Jacobi’s criticism of Lagrange: The changing role of mathematics in the foundations of classical mechanics. Historia Mathematica, 25(2), 154–184.

    Article  Google Scholar 

  • Pulte, H. (2012). Rational mechanics in the eighteenth century. On structural developments of a mathematical science. Berichte zur Wissenschaftsgeschichte, 35(3), 183–199.

    Article  Google Scholar 

  • Quine, W. (1968). Ontological relativity. The Journal of Philosophy, 65(7), 185–212.

    Article  Google Scholar 

  • Reeder, P. (2012). A ‘non-standard analysis’ of Euler’s Introductio in Analysin Infitorum. MWPMW 13. University of Notre Dame, October 27-28, 2012. See http://philosophy.nd.edu/assets/81379/mwpmw_13.summaries.pdf

  • Reeder, P. (2013). Internal set theory and Euler’s Introductio in analysin infinitorum. M.Sc. Thesis, Ohio State University.

  • Robinson, A. (1961). “Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A, 64 = Indag. Math., 23, 432–440. (reprinted in Selected Works, see Robinson 1979).

  • Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Robinson, A. (1969). From a formalist’s points of view. Dialectica, 23, 45–49.

    Article  Google Scholar 

  • Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg & S. Körner. New Haven: Yale University Press.

  • Sandifer, C. (2007). Euler’s solution of the Basel problem–the longer story. In Euler at 300, 105–117. MAA Spectrum, Math. Assoc. America, Washington, DC.

  • Schubring, G. (2016). Comments on a Paper on Alleged Misconceptions Regarding the History of Analysis: Who Has Misconceptions? Foundations of Science. Online first. doi:10.1007/s10699-015-9424-0.

  • Sherry, D. (1987). The wake of Berkeley’s Analyst: Rigor mathematicae? Studies in History and Philosophy of Science, 18(4), 455–480.

    Article  Google Scholar 

  • Sherry, D., Katz, M. (2014). Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana, 44(2), 166–192.

  • Stolz, O. (1883). Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes. Mathematische Annalen, 22(4), 504–519.

    Article  Google Scholar 

  • Stolz, O. (1885). Vorlesungen über Allgemeine Arithmetik. Leipzig: Teubner.

    Google Scholar 

  • Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate Studies in Mathematics, 153. Providence: American Mathematical Society.

  • Tho, T. (2012). Equivocation in the foundations of Leibniz’s infinitesimal fictions. Society and Politics, 6(2), 70–98.

    Google Scholar 

  • Vermij, R. (1989). Bernard Nieuwentijt and the Leibnizian calculus. Studia Leibnitiana, 21(1), 69–86.

    Google Scholar 

  • Wallis, J. (1656/2004). The arithmetic of infinitesimals. Translated from the Latin and with an introduction by Jaequeline A. Stedall. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.

  • Wallis, J. (1685). Treatise of Algebra. Oxford.

  • Wartofsky, M. (1976). The relation between philosophy of science and history of science. In R. S. Cohen, P. K. Feyerabend, & M. W. Wartofsky (Eds.), Essays in Memory of Imre Lakatos (pp. 717–737). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Weber, H. (1895). Lehrbuch der Algebra. Braunschweig: Vieweg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Appendix: Analysis of Euler’s Proof

Appendix: Analysis of Euler’s Proof

In Sect. 3.5 we summarized Euler’s derivation of the product decomposition for sine. The derivation of infinite product decompositions (9) and (10) as found in (Euler 1748, §156) can be broken up into seven steps as follows. Recall that Euler’s i is an infinite integer.

Step 1 Euler observes that

$$\begin{aligned} 2\sinh x= & {} e^x-e^{-x} = \left( 1+\frac{x}{i}\right) ^{i}-\left( 1-\frac{x}{i}\right) ^{i}, \end{aligned}$$
(23)

where i is an infinitely large natural number. To motivate the next step, note that the expression \(x^i-1=(x-1)(1+x+x^2+\cdots +x^{i-1})\) can be factored further as a product \(\prod _{k=0}^{i-1}(x-\zeta ^k)\), where \(\zeta =e^{2\pi \sqrt{-1}/i}\); conjugate factors can then be combined to yield a decomposition into real quadratic terms.

Step 2 Euler uses the fact that \(a^{i}-b^{i}\) is the product of the factors

$$\begin{aligned} a^2+b^2-2ab\cos \frac{2k\pi }{i},\quad \text {where}\quad 1\le k<\frac{i}{2}, \end{aligned}$$
(24)

together with the factor \(a-b\) and, if i is an even number, the factor \(a+b\), as well.

Step 3 Setting \(a=1+\frac{x}{i}\) and \(b=1-\frac{x}{i}\) in (23), Euler transforms expression (24) into the form

$$\begin{aligned} 2+2\frac{x^2}{{i}^2}-2\bigg (1-\frac{x^2}{{i}^2}\bigg ) \cos \frac{2k\pi }{i}\,. \end{aligned}$$
(25)

Step 4 Euler then replaces (25) by the expression

$$\begin{aligned} \frac{4k^2\pi ^2}{{i}^2} \bigg (1+\frac{x^2}{k^2\pi ^2}-\frac{x^2}{{i}^2}\bigg ), \end{aligned}$$
(26)

justifying this step by means of the formula

$$\begin{aligned} \cos \frac{2k\pi }{i} = 1-\frac{2k^2\pi ^2}{{i}^2}. \end{aligned}$$
(27)

Step 5 Next, Euler argues that the difference \(e^x-e^{-x}\) is divisible by the expression

$$\begin{aligned} 1+\frac{x^2}{k^2\pi ^2}-\frac{x^2}{i^2} \end{aligned}$$
(28)

from (26), where “we omit the term \(\frac{x^2}{{i}^2}\) since even when multiplied by i, it remains infinitely small” Euler (1988).

Step 6 As there is still a factor of \(a-b=2x/{i}\), Euler obtains the final equality (9), arguing that then “the resulting first term will be x” (in order to conform to the Maclaurin series for \(\sinh x\)).

Step 7 Finally, formula (10) is obtained from (9) by means of the substitution \(x\mapsto \sqrt{-1}\,x\).

Euler’s argument in favor of (9) and (10) was formalized in terms of a proof in Robinson’s framework in Luxemburg (1973). However, Luxemburg’s formalisation deviates from Euler’s argument beginning with steps 3 and 4, and thus circumvents the most problematic steps 5 and 6. A proof in Robinson’s framework, formalizing Euler’s argument step-by-step throughout, appeared in the article Kanovei (1988); see also McKinzie and Tuckey (1997) as well as the monograph (Kanovei and Reeken 2004, section 2.4a). This formalisation interprets problematic details of Euler’s argument on the basis of general principles in Robinson’s framework, as well as general analytic facts that were known in Euler’s time. Such principles and facts behind some early proofs exploiting infinitesimals are sometimes referred to as hidden lemmas in this context; see Laugwitz (1987a, 1989), McKinzie and Tuckey (1997).

For instance, a hidden lemma behind Step 4 asserts, on the basis of the evaluation of the remainder R of the Taylor expansion

$$\begin{aligned} \cos \frac{2k\pi }{i}=1-\frac{2k^2\pi ^2}{i^2}+R\;, \end{aligned}$$

that the quadratic polynomial \(T_k(x)=2+2\frac{x^2}{{i}^2}-2\big (1-\frac{x^2}{{i}^2}\big ) \cos \frac{2k\pi }{i}\) as in (25) admits the representation

$$\begin{aligned} T_k(x)= C_k\,\big (U_k(x)+p_k\cdot x^2\big ), \end{aligned}$$

where \(C_k\) and \(p_k\) do not depend on x while

$$\begin{aligned} U_k(x)= 1+\frac{x^2}{k^2\pi ^2}-\frac{x^2}{i^2}, \end{aligned}$$

and for any standard real x and any finite or infinitely large integer \(k\le \frac{i}{2}\,\) the following holds:

  1. (1)

    if k is finite then \(p_k\) is infinitesimal, and

  2. (2)

    there is a real \(\gamma \) such that \(|p_k|<\gamma \cdot k^{-2}\) for any infinitely large \(k\le \frac{i}{2}\,\).

This allows one to infer that the effect of the transformation of step 4 on the product of factors (25) is infinitesimal. See (Kanovei 1988, §4) as well as equation (11) on page 75 in Kanovei and Reeken (2004) for additional details.

Some hidden lemmas of a different kind, related to basic principles of nonstandard analysis, are discussed in McKinzie and Tuckey (1997, 43ff; see below).

What clearly stands out of Euler’s argument is his explicit use of infinitesimal quantities such as (25) and (26), as well as the approximate formula (27) which holds “up to” an infinitesimal of higher order. Thus, Euler exploited bona fide infinitesimals, rather than merely ratios thereof, in a routine fashion in some of his best work.

We now provide further technical details on a hyperreal interpretation of Euler’s proof of the product formula for the sine function. Our goal here is to indicate how Euler’s inferential moves find modern proxies in a hyperreal framework.

We discuss the hidden lemmas related to basic principles of nonstandard analysis following McKinzie and Tuckey (1997, 43ff), where it is argued that the Euler sine factorisation and similar constructions are best understood in the context of the following hidden definition in terms of modern nonstandard analysis. The following definition is borrowed from McKinzie and Tuckey (1997, 44).

Definition. A sum \(a_1+ a_2 + a_3 + \cdots \) is Euler-convergent (E-convergent) if and only if

  1. (i)

    \(a_k\) is defined by an elementary function,Footnote 13

  2. (ii)

    for all infiniteFootnote 14 J, the sum \(a_1+ a_2 + \cdots +a_J\) is finite, and

  3. (iii)

    for all infinite pairs \(J<K\), the sum \(a_J+ a_{J+1} + \ldots +a_K\) is infinitesimal.

Similarly, a product \((1+b_l)(1+b_2)(1+b_3)\ldots \) is Euler-convergent if and only if (i) \(b_k\) is defined by an elementary function, (ii) for all infinite J, the product \((1+b_1)(1+b_2)\ldots (1 + b_J)\) is finite, and (iii) for all infinitely large \(J<K\), the product \((1 + b_J)(1 + b_{J+1})\ldots (1 + b_K)\) differs infinitesimally from 1.

Next, McKinzie and Tuckey present a series of hidden lemmas implicit in Euler’s argument. The first such hidden lemma asserts that if the sums \(a_1+ a_2 + \cdots \) and \(b_1+ b_2 + \cdots \) are E-convergent and \(a_k\simeq b_k\) (meaning that \(a_k-b_k\) is infinitesimal) for all finite k, then

$$\begin{aligned} a_1+ a_2 + \cdots +a_N\simeq b_1+ b_2 + \cdots +b_N \end{aligned}$$

for all N finite and infinite. To prove this lemma, it suffices to note that if \(a_k\simeq b_k\) holds for all finite k, then, by Robinson’s lemma (see e. g. Theorem 2.2.12, in Kanovei and Reeken 2004, 62), there is an infinite K such that \(a_1+\cdots +a_k\simeq b_1+\cdots +b_k\) holds for all \(k\le K\).

The second hidden lemma asserts a similar property for products. The third hidden lemma asserts that if, for all finite x, the sums

$$\begin{aligned} f(x)=a_0+a_1x+a_2x^2+\cdots \quad \text {and}\quad g(x)=b_0+b_1x+b_2x^2+\cdots \end{aligned}$$

are E-convergent and we have [\(f(x)\simeq g(x)\)]. This means that \(a_0+a_1x+a_2x^2+\cdots +a_Jx^J\simeq b_0+b_1x+b_2x^2+\cdots +b_Kx^K\) for all infinite JK. Note that the choice of JK is immaterial by (ii) and (iii) of the definition of E-convergence. Then \(a_n\simeq b_n\) for all n finite and infinite. A detailed analysis in McKinzie and Tuckey (1997) shows that these three lemmas, together with an additional sublemma, suffice to formalize Euler’s derivations step-by-step in a hyperreal framework.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bair, J., Błaszczyk, P., Ely, R. et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler. J Gen Philos Sci 48, 195–238 (2017). https://doi.org/10.1007/s10838-016-9334-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-016-9334-z

Keywords

Mathematics Subject Classification

Navigation