Skip to main content
Log in

Electrical properties, thermopower and Mössbauer spectroscopy of rutile-type relaxor ferroelectric-like Fe0.9 W0.1TiMO6 (M = Ta,Nb) ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Electrical properties of rutile-type Fe0.9 W0.1TiMO6 (M = Ta,Nb) ceramics were studied. The results are compared to those observed previously on rutile-type relaxor ferroelectric-like FeTiMO6 and Fe0.9 W0.05TiMO6 (M = Ta,Nb) ceramics. In part high dielectric constant ε(ω) (ω is angular frequency) is observed at ≈ 500–600 K, with peak ε(ω) up to ≈ 2.3 × 104 for the frequency of 162 Hz (Ag-paint contacts), decreasing with rising frequency. Some quantities might also be of interest in terms of solid oxide fuel cell anode materials for which similar rutile-type oxide solid solutions were proposed in the literature. Apart from the study of ε(ω), the electrical response is analysed by measuring DC conductivity σDC, AC conductivity σAC(ω), losses ε”(ω) and dissipation factor tan δ, using impedance spectroscopy. For both compounds, the temperature dependence of bulk σDC shows Arrhenius behavior with activation energy of EA ≈ 0.2–0.35 eV and σDC(295 K) ≈ 10−3–10−5 Ω−1 cm−1 depending on preparation conditions and composition; grain boundaries exhibit slightly higher EA, the values of σDC are a factor of up to ≈ 10 lower at all temperatures. From σAC(ω) data, a power law frequency dependence of conductivity by grain boundaries is derived in some instances. Relaxation processes are established from ε”(ω) and tan δ data. Thermopower data reveal different bulk conduction mechanisms for samples prepared in air or reducing atmosphere. Eventual microstructural local inhomogeneities and possible mixed valences Fe2+/Fe3+ are analysed by means of 57Fe Mössbauer spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.T. Fehr, R. Hochleitner, E. Schmidbauer, J. Electroceram. 30, 191 (2013)

    Article  Google Scholar 

  2. R. Mani, S.N. Achary, K.R. Chakraborty, S.K. Deshpande, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, Adv. Mater. 20, 1348 (2008)

    Article  Google Scholar 

  3. R. Mani, S.N. Achary, K.R. Chakraborty, S.K. Deshpande, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, J. Solid State Chem. 183, 1380 (2010)

    Article  Google Scholar 

  4. Y. Shi, Y.-D. Hou, C. Wang, H.-Y. Ge, M.-K. Zhu, J. Am. Ceram. Soc. 93, 2491 (2010)

    Article  Google Scholar 

  5. G.-G. Yao, P. Liu, Physica B 405, 1955 (2010)

    Article  Google Scholar 

  6. K.T. Fehr, R. Hochleitner, E. Schmidbauer, J. Electroceram. 29, 240 (2012)

    Article  Google Scholar 

  7. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  Google Scholar 

  8. L.E. Cross, Ferroelectrics 151, 305 (1994)

    Article  Google Scholar 

  9. M. Yokosuka, Jpn. J. Appl. Phys. 34, 214 (1995)

    Article  Google Scholar 

  10. V. Bobnar, Z. Kutnjak, R. Pirc, R. Blinc, A. Levstik, Phys. Rev. Lett. 84, 5892 (2000)

    Article  Google Scholar 

  11. J. Ravez, A. Simon, J. Solid State Chem. 162, 260 (2001)

    Article  Google Scholar 

  12. B.-C. Woo, B.-K. Kim, Jpn. J. Appl. Phys. 42, 6037 (2003)

    Article  Google Scholar 

  13. A. Simon, J. Ravez, M. Maglione, J. Phys.:Condens. Matter 16, 963 (2004)

    Google Scholar 

  14. M. Alguero, B. Jimenez, L. Pardo, Appl. Phys. Lett. 87, 082910 (2005)

    Article  Google Scholar 

  15. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane, Nat. Mater. 5, 134 (2006)

    Article  Google Scholar 

  16. D. Rout, V. Subramanian, K. Hariharan, V. Sivasubramanian, Solid State Commun. 137, 446 (2006)

    Article  Google Scholar 

  17. R. Jimenez, B. Jimenez, J. Carreaud, J.M. Kiat, B. Dkhil, J. Holc, M. Kosec, M. Alguero, Phys. Rev. B 74, 184106 (2006)

    Article  Google Scholar 

  18. A.E. Glazounov, A.K. Tagantsev, App. Phys. Lett. 73, 856 (1998)

    Article  Google Scholar 

  19. R. Pirc, R. Blinc, Phys. Rev. B 60, 13470 (1999)

    Article  Google Scholar 

  20. B.E. Vugmeister, Phys. Rev. B 73, 174117 (2006)

    Article  Google Scholar 

  21. R. Pirc, R. Blinc, Phys. Rev. B 76, 020101 (2007)

    Article  Google Scholar 

  22. M. Li, D.C. Sinclair, A.R. West, J. Appl. Phys. 109, 084106 (2011)

    Article  Google Scholar 

  23. S. Ke, H. Huang, H. Fan, Appl. Phys. Lett. 89, 182904 (2006)

    Article  Google Scholar 

  24. Y.-D. Hou, Y. Shi, H.-Y. Ge, M.-K. Zhu, H. Yan, Mater. Res. Bull. 47, 184 (2012)

    Article  Google Scholar 

  25. P.S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 10, 2753 (1998)

    Article  Google Scholar 

  26. N.S.P. Bhuvanesh, J. Gopalakrishnan, J. Mater. Chem. 7, 2297 (1997)

    Article  Google Scholar 

  27. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)

    Article  Google Scholar 

  28. X.-M. Ge, S.-H. Chan, Q.-L. Liu, Q. Sun, Adv. Energy Mater. 2, 1156 (2012)

    Article  Google Scholar 

  29. A. Lashtabeg, J. Canales-Vasquez, J.T.S. Irvine, J.L. Bradley, Chem. Mater. 21, 3549 (2009)

    Article  Google Scholar 

  30. J.C. Perez Flores, F. Garcia-Alvarado, Solid State Sci. 11, 207 (2009)

    Article  Google Scholar 

  31. P.I. Cowin, C.T.G. Petit, R. Lan, C.J. Schaschke, S. Tao, Solid State Ion. 236, 48 (2013)

    Article  Google Scholar 

  32. C. Lee, P. Ghosez, X. Gonze, Phys. Rev. B 50, 13379 (1994)

    Article  Google Scholar 

  33. J. Maier, Prog. Solid State Chem. 23, 171 (1995)

    Article  Google Scholar 

  34. J.A.S. Ikeda, Y.-M. Chiang, A.J. Garrat-Reed, J.B. Vander Sande, J. Am. Ceram. Soc. 76, 2447 (1993)

    Article  Google Scholar 

  35. R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich, Phys. Rev. B 85, 174109 (2012)

    Article  Google Scholar 

  36. G.A. Samara, J. Phys. Condens. Matter 15, R367 (2003)

    Article  Google Scholar 

  37. E. Schmidbauer, J. Schneider, J. Solid State Chem. 134, 253 (1997)

    Article  Google Scholar 

  38. J.P. Moore, R.S. Graves, J. Appl. Phys. 44, 1174 (1973)

    Article  Google Scholar 

  39. I.P. Raevski, S.K. Kubrin, S.I. Raevskaya, D.A. Sarychev, S.A. Prosandeev, M.A. Malitskaya, Phys. Rev. B 85, 224412 (2012)

    Article  Google Scholar 

  40. A. Mesquita, B.M. Fraygola, V.R. Mastelaro, J.A. Eiras, Appl. Phys. Lett. 100, 172907 (2012)

    Article  Google Scholar 

  41. P. Escribano, F. Fabregat, G. Garcia-Belmonte, E. Cordoncillo, J. Bisquert, M.A. Tena, J. Mater. Sci. 33, 4235 (1998)

    Article  Google Scholar 

  42. M. Valigi, D. Cordischi, G. Minelli, P. Natale, P. Porta, C.P. Keijzers, J. Solid State Chem. 77, 255 (1988)

    Article  Google Scholar 

  43. J.R. Macdonald, Solid State Ion. 176, 1961 (2005)

    Article  Google Scholar 

  44. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165 (2003)

    Article  Google Scholar 

  45. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)

    Article  Google Scholar 

  46. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  47. D.K. Mahato, A. Dutta, T.P. Sinha, J. Electroceram. 29, 99 (2012)

    Article  Google Scholar 

  48. A.S. Nowick, A.V. Vaysleyb, B.S. Lim, J. Appl. Phys. 76, 4429 (1994)

    Article  Google Scholar 

  49. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  Google Scholar 

  50. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5576 (2003)

    Article  Google Scholar 

  51. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  52. N. Kumar, A. Dutta, S. Prasad, T.P. Sinha, J. Alloys Compd. 511, 144 (2012)

    Article  Google Scholar 

  53. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 262904 (2007)

    Article  Google Scholar 

  54. Y.Q. Lin, X.M. Chen, J. Am. Ceram. Soc. 94, 782 (2011)

    Article  Google Scholar 

  55. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  Google Scholar 

  56. R.R. Heikes, A.A. Maradudin, R.C. Miller, Ann. Phys. 8, 733 (1963)

    Google Scholar 

  57. P.M. Chaikin, G. Beni, Phys. Rev. B 13, 647 (1976)

    Article  Google Scholar 

  58. B.A. Griffiths, D. Ewell, R. Parker, Phil. Mag. 22, 163 (1970)

    Article  Google Scholar 

  59. T.O. Mason, H.K. Bowen, J. Am. Ceram. Soc. 64, 237 (1981)

    Article  Google Scholar 

  60. G. Srinivasan, C.M. Srivistava, Phys. Stat. Sol. (b) 103, 665 (1981)

    Article  Google Scholar 

  61. B. Gillot, F. Jemmali, Phys. Stat. Sol. (a) 76, 601 (1983)

    Article  Google Scholar 

  62. R. Manjula, V.R.K. Murthy, J. Sobhanadri, J. Appl. Phys. 59, 2929 (1986)

    Article  Google Scholar 

  63. H.-I. Yoo, H.L. Tuller, J. Am. Ceram. Soc. 70, 388 (1987)

    Article  Google Scholar 

  64. M.A. Ahmed, M.K. El-Nimr, A. Tawfik, A.M. El-Hasab, Phys. Stat. Sol. (a) 123, 501 (1991)

    Article  Google Scholar 

  65. D. Kim, J.M. Honig, Phys. Rev. B 49, 4438 (1994)

    Article  Google Scholar 

  66. R. Stumpe, D. Wagner, D. Bäuerle, Phys. Stat. Sol. (a) 75, 143 (1983)

    Article  Google Scholar 

  67. W. Su, J. Wang, H. Chen, G. Zang, P. Qi, C. Wang, Key Eng. Mater. 280–283, 289 (2005)

    Article  Google Scholar 

  68. W.Y. Wang, D.F. Zhang, T. Xu, Y.P. Xu, T. Zhou, B.Q. Hu, C.Y. Wang, L.S. Wu, X.L. Chen, Appl. Phys. A 76, 71 (2003)

    Article  Google Scholar 

  69. W.-B. Su, J.-F. Wang, H.-C. Chen, W.-X. Wang, G.-Z. Zhang, C.P. Li, J. Appl. Phys. 92, 4779 (2002)

    Article  Google Scholar 

  70. A.I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, T. Mitsui, Phys. Rev. B 77, 014302 (2008)

    Article  Google Scholar 

  71. A. Ivaszuk, M. Nolan, J. Phys. Condens. Matter 23, 334207 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Ms. M. John for assistance in X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schmidbauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehr, K.T., Günther, A., Hochleitner, R. et al. Electrical properties, thermopower and Mössbauer spectroscopy of rutile-type relaxor ferroelectric-like Fe0.9 W0.1TiMO6 (M = Ta,Nb) ceramics. J Electroceram 34, 262–274 (2015). https://doi.org/10.1007/s10832-014-9979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9979-0

Keywords

Navigation