Skip to main content
Log in

Electrochemical properties of doped ceria electrolyte under reducing atmosphere: Bulk and grain boundary

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a symmetrical cell, Pt/Ce0.8Sm0.2O1.9−δ/Pt, under reducing conditions and wide temperature range (250 – 600 °C) is detailed. In terms of the charge carriers transport through the electrolyte microstructure, AC impedance spectroscopy has been applied to address useful concerns about the transport properties over electrolytic and mixed conduction regimes. The impedance spectra at lower temperature and oxygen partial pressure show the electrochemical response of separated bulk and grain boundary contributions. The increase in the electronic conductivity from 250 to 400 °C shows that the electrochemical reduction Ce4+/Ce3+ is as kinetic as thermodynamically favorable in the experimental conditions. In a typical Nyquist plot of an impedance diagram, until temperatures as low as 400 °C, the high and low frequency arcs can be accessed and the influence of reducing atmosphere over both the components is presented. The apparent activation energy for the electronic process (ΔE) extracted from the total conductivity is 2.54 eV. Distinguished bulk (2.34 eV) and grain boundary (2.63 eV) activation energies point the latter as an energetic barrier in the redox reaction. The oxygen partial pressure dependence of individual capacitances suggests storage of electrical charge along grain boundaries which can potentially behave as a chemical capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science 330, 1797 (2010)

    Article  CAS  Google Scholar 

  2. W.C. Chueh, Y. Hao, W. Jung, S.M. Haile, Nat. Mater. 11, 155 (2012)

    Article  CAS  Google Scholar 

  3. E.C.C. Souza, W.C. Chueh, W. Jung, E.N.S. Muccillo, S.M. Haile, J. Electrochem. Soc. 159, K127 (2012)

    Article  CAS  Google Scholar 

  4. H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122, 255 (1975)

    Article  CAS  Google Scholar 

  5. H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics 36, 71 (1989)

    Article  CAS  Google Scholar 

  6. M. Gödickemeier, L.J. Gauckler, J. Electrochem. Soc. 145, 414 (1998)

    Article  Google Scholar 

  7. B.C.H. Steele, Solid State Ionics 129, 95 (2000)

    Article  CAS  Google Scholar 

  8. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)

    Article  CAS  Google Scholar 

  9. T. Matsui, M. Inaba, A. Mineshige, Z. Ogumi, Solid State Ionics 176, 647 (2005)

    Article  CAS  Google Scholar 

  10. W. Lai, S.M. Haile, J. Am. Ceram. Soc. 88, 2979 (2005)

    Article  CAS  Google Scholar 

  11. J. Maier, Physical chemistry of ionic materials – ions and electrons in solids, 1st edn. (John Wiley & Sons, England, 2004), pp. 312–352

    Book  Google Scholar 

  12. T. Shimonosono, Y. Hirata, Y. Ehira, S. Sameshima, T. Horita, H. Yokokawa, Solid State Ionics 174, 27 (2004)

    Article  CAS  Google Scholar 

  13. T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Solid State Ionics 176, 663 (2005)

    Article  CAS  Google Scholar 

  14. S. Lubke, H.D. Wiemhofer, Solid State Ionics 117, 229 (1999)

    Article  CAS  Google Scholar 

  15. W.C. Chueh, W. Lai, S.M. Haile, Solid State Ionics 179, 1036 (2008)

    Article  CAS  Google Scholar 

  16. T. Kobayashi, S. Wang, M. Dokiya, H. Tagawa, T. Hashimoto, Solid State Ionics 126, 349 (1999)

    Article  CAS  Google Scholar 

  17. E.C.C. Souza, E.N.S. Muccillo, J. Alloys Compd. 473, 560 (2009)

    Article  CAS  Google Scholar 

  18. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.T. Tuller, J. Electroceram. 1, 7 (1997)

    Article  CAS  Google Scholar 

  19. W.C. Chueh, S.M. Haile, Phys. Chem. Chem. Phys. 11, 8144 (2009)

    Article  CAS  Google Scholar 

  20. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 3, 1668 (2001)

    Article  CAS  Google Scholar 

  21. W.C. Chueh, A.H. McDaniel, M.E. Grass, Y. Hao, N. Jabeen, Z. Liu, S.M. Haile, K.F. McCarty, H. Bluhm, F.E. Gabaly, Chem. Mater. 24, 1876 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledge the professor Sossina M. Haile for the teaching and for the experimental facilities used in this work which were supported by the U.S National Science Foundation through the Caltech Center for the Science and Engineering of Materials, a Materials Research Science and Engineering Center (DMR-052056). Financial support from the following agencies: Sao Paulo Research Foundation (FAPESP), Brazilian National Nuclear Energy Commission (CNEN). Additional financial support was provided by FAPESP to E.C.C. Souza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo C. C. Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, E.C.C. Electrochemical properties of doped ceria electrolyte under reducing atmosphere: Bulk and grain boundary. J Electroceram 31, 245–253 (2013). https://doi.org/10.1007/s10832-013-9826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9826-8

Keywords

Navigation