Skip to main content

Advertisement

Log in

Electrical properties of rutile-type relaxor ferroelectric-like Fe0.9W0.05TiMO6 (M = Ta,Nb) ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Electrical properties of rutile-type \(\mathrm {Fe}_{0.9}{\kern 1pt} \mathrm {W}_{0.05}\\\mathrm {TiMO}_{6} (\mathrm {M} {} = {} \mathrm {Ta,Nb})\) ceramics were measured at and above room temperature and the results are compared with those gained previously on rutile-type relaxor ferroelectrics \(\mathrm {FeTiMO}_{6} (\mathrm {M} {} = {} \mathrm {Ta,Nb})\). The aliovalent \({\rm W}^{6+}\) cationsin the current compounds might change the suggested polar nanodomains, giving rise to very high dielectric constant \(\epsilon (\omega )\), and further electrical quantities can possibly shed additional light on the nature of the mechanism leading to extraordinary values in \(\epsilon (\omega )\). In part similar electrical data were established such as very high \(\epsilon (\omega )\) but also different results were noted. Apart from \(\epsilon (\omega )\), the electrical response was analysed by measuring losses, dissipation factor \(\tan \delta \), DC conductivity \(\sigma _{DC}\) and AC conductivity \(\sigma _{AC}(\omega )\) using impedance spectroscopy, and thermopower; the results are discussed in conjunction with literature data. The role of grain boundaries and sample-electrode processes was investigated in particular with respect to the sample capacitance. Eventual microstructural local inhomogeneities were checked by means of 57Fe Mössbauer spectroscopy. For both compounds, the temperature dependence of bulk \(\sigma _{DC}\) showed Arrhenius behaviour with activation energy \({E_{A}}\sim \) 0.35 eV and \(\sigma _{DC}\) (295 K) \(\sim 5\times 10^{-5} \Omega ^{-1}\text{cm}^{-1}\); grain boundaries exhibited slightly higher \({E_{A}}\) but the value of \(\sigma _{DC}\) was a factor of up to \(\sim 10\) lower at all temperatures. From \(\sigma _{AC}(\omega )\) data, a power law frequency dependence of grain boundary conductivity was derived. Relaxation processes were established from loss and \(\tan \delta \) data. The thermopower is negative and varies weakly with temperature, pointing to long-range charge transfer by a hopping-type mechanism of electron polarons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Mani , S.N. Achary, K.R. Chakraborty, S.K. Despandhe, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, Adv. Mater. 20, 1348 (2008)

    Article  CAS  Google Scholar 

  2. R. Mani, S.N. Achary, K.R. Chakraborty, S.K. Despandhe, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, J. Solid State Chem. 183, 1380 (2010)

    Article  CAS  Google Scholar 

  3. Y. Shi, Y.-D. Hou, C. Wang, H.-Y. Ge, M.-K. Zhu, Am. J. Ceram. Soc. 93, 2491 (2010)

    Article  CAS  Google Scholar 

  4. G. Yao, P. Liu, Physica B 405, 1955 (2010)

    Article  CAS  Google Scholar 

  5. K.Th. Fehr, R. Hochleitner, E. Schmidbauer, J. Electroceram. 29, 240 (2012)

    Article  Google Scholar 

  6. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  CAS  Google Scholar 

  7. L.E. Cross, Ferroelectr. 151, 305 (1994)

    Article  CAS  Google Scholar 

  8. M. Yokosuka, Appl. Jpn. J. Phys. 34, 214 (1995)

    Article  CAS  Google Scholar 

  9. V. Bobnar, Z. Kutnjak, R. Pirc, R. Blinc, A. Levstik, Phys. Rev. Lett. 84, 5892 (2000)

    Article  CAS  Google Scholar 

  10. J. Ravez, A. Simon, J. Solid State Chem. 162, 260 (2001)

    Article  CAS  Google Scholar 

  11. B.-C. Woo, B.-K. Kim, Jpn. J. Appl. Phys. 42, 6037 (2003)

    Article  CAS  Google Scholar 

  12. A. Simon, J. Ravez, M. Maglione, J. Phys.: Condens. Matter. 16, 963 (2004)

    Article  CAS  Google Scholar 

  13. M. Alguero, B. Jimenez, L. Pardo, Appl. Phys. Lett. 87, 082910 (2005)

    Article  Google Scholar 

  14. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane, Nat. Mater. 5, 134 (2006)

    Article  CAS  Google Scholar 

  15. D. Rout, V. Subramanian, K. Hariharan, V. Sivasubramanian, Solid State Commun. 137, 446 (2006)

    Article  CAS  Google Scholar 

  16. R. Jimenez, B. Jimenez, J. Carreaud, J.M. Kiat, B. Dkhil, J. Holc, M. Kosec, M. Alguero, Phys. Rev. B 74, 184106 (2006)

    Article  Google Scholar 

  17. A.E. Glazounov, A.K. Tagantsev, Appl. Phys. Lett. 71, 856 (1998)

    Article  Google Scholar 

  18. R. Pirc, R. Blinc, Phys. Rev. B 60, 13470 (1999)

    Article  CAS  Google Scholar 

  19. B.E. Vugmeister, Rev. Phys. B 73, 174117 (2006)

    Article  Google Scholar 

  20. A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  CAS  Google Scholar 

  21. R. Pirc, R. Blinc, Phys. Rev. B 76, 020101 (2007)

    Article  Google Scholar 

  22. S. Ke, H. Huang, H. Fan, Appl. Phys. Lett. 89, 182904 (2006)

    Article  Google Scholar 

  23. H. Yu, H. Liu, H. Hao, L. Guo, C. Jin, Z. Yu, M. Cao, Appl. Phys. Lett. 91, 222911 (2007)

    Article  Google Scholar 

  24. A. Onodera, M. Takesada, K. Kawatani, S. Hiramatsu, Jpn. J. Appl. Phys. 47, 7753 (2008)

    Article  CAS  Google Scholar 

  25. M. Li, D.C. Sinclair, A.R. West, J. Appl. Phys. 109, 084106 (2011)

    Article  Google Scholar 

  26. Y.-D. Hou, Y. Shi, H.-Y. Ge, M.-K. Zhu, H. Yan, Mater. Res. Bull. 47, 167 (2012)

    Article  Google Scholar 

  27. P.S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 10, 2753 (1998)

    Article  CAS  Google Scholar 

  28. N.S.P. Bhuvanesh, J. Gopalakrishnan, J. Mater. Chem. 7, 2297 (1997)

    Article  CAS  Google Scholar 

  29. C. Lee, P. Ghosez, X. Gonze, Phys. Rev. B 50, 13379 (1994)

    Article  CAS  Google Scholar 

  30. M.F. Yan, R.M. Cannon, H.K. Bowen, J. Appl. Phys. 54, 764 (1983)

    Article  CAS  Google Scholar 

  31. J. Maier, Prog. Solid State Chem. 23, 171 (1995)

    Article  CAS  Google Scholar 

  32. J.A.S. Ikeda, Y.-M. Chiang, A.J. Garrat-Reed, J.B. Vander Sande, Am. J. Ceram. Soc. 76, 2447 (1993)

    Article  CAS  Google Scholar 

  33. W.Y. Wang, D.F. Zhang, T. Xu, Y.P. Xu, T. Zhou, B.Q. Hu, C.Y. Wang, L.S. Wu, X.L. Chen, Appl. Phys. A 76, 71 (2003)

    Article  CAS  Google Scholar 

  34. S.-L. Yang, J.M. Wu, Am. J. Ceram. Soc. 76, 145 (1993)

    Article  CAS  Google Scholar 

  35. R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich, Phys. Rev. B 85, 174109 (2012)

    Article  Google Scholar 

  36. G.A. Samara, J. Phys.: Condens. Matter. 15, R367 (2003)

    Article  CAS  Google Scholar 

  37. I.P. Raevski, S.K. Kubrin, S.I. Raevskaya, D.A. Sarychev, S.A. Prosandeev, M.A. Malitskaya, Phys. Rev. B 85, 224412 (2012)

    Article  Google Scholar 

  38. A. Mesquita, B.M. Fraygola, V.R. Mastelaro, J.A. Eiras, Appl. Phys. Lett. 100, 172907 (2012)

    Article  Google Scholar 

  39. J.R. Macdonald, Solid State Ion. 176, 1961 (2005)

    Article  CAS  Google Scholar 

  40. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165 (2003)

    Article  CAS  Google Scholar 

  41. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)

    Article  Google Scholar 

  42. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  43. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  44. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  45. A.S. Nowick, A.V. Vaysleyb, B.S. Lin, J. Appl. Phys. 76, 4429 (1994)

    Article  CAS  Google Scholar 

  46. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)

    Article  CAS  Google Scholar 

  47. N.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  CAS  Google Scholar 

  48. H. Böttger, V.V. Bryksin, G.Y. Yashin, J. Phys. C: Solid State Phys. 12, 3951 (1979)

    Article  Google Scholar 

  49. S. Summerfield, P.N. Butcher, J. Phys. C: Solid State Phys. 15, 7003 (1982)

    Article  CAS  Google Scholar 

  50. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  51. A.R. Long, Mag. Philos. B 59, 377 (1989)

    Article  CAS  Google Scholar 

  52. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  53. N. Kumar, A. Dutta, S. Prasad, T.P. Sinha, Solid State Commun. 152, 2003 (2012)

    Article  CAS  Google Scholar 

  54. D.K. Mahato, A. Dutta, T.P. Sinha, J. Electroceram. 29, 99 (2012)

    Article  CAS  Google Scholar 

  55. J.C. Dyre, T.B. Schröder, Rev. Mod. Phys. 72, 873 (2000)

    Article  Google Scholar 

  56. M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, A.R. West, J. Appl. Phys. 106, 104106 (2009)

    Article  Google Scholar 

  57. X.J. Luo, C.P. Yang, X.P. Song, C. Huang, R.L. Wang, L.F. Xu, K. Bärner, J. Appl. Phys. 109, 084113 (2011)

    Article  Google Scholar 

  58. R. Stumpe, D. Wagner, D. Bäuerle, Phys. Stat. Solid A 75, 143 (1983)

    Article  CAS  Google Scholar 

  59. B.S. Kang, S.K. Choi, Solid State Commun. 121, 441 (2002)

    Article  CAS  Google Scholar 

  60. B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904 (2003)

    Article  CAS  Google Scholar 

  61. H. Fröhlich, Theory of Dielectrics (Clarendon Press, Oxford, 1958)

    Google Scholar 

  62. S.K. Deshpande, S.N. Achary, R. Mani, J. Gopalakrishnan, A.K. Tyagi, Phys. Rev. B 84, 064301 (2011)

    Article  Google Scholar 

  63. Z. Yu, C. Ang, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Appl. Phys. 83, 4874 (1998)

    Article  CAS  Google Scholar 

  64. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 262904 (2007)

    Article  Google Scholar 

  65. S. Ke, H. Fan, H. Huang, J. Electroceram. 22, 252 (2009)

    Article  CAS  Google Scholar 

  66. E. Iguchi, Y. Tokuda, H. Nakatsugawa, F. Munakata, J. Appl. Phys. 91, 2149 (2002)

    Article  CAS  Google Scholar 

  67. Y.Q. Lin, X.M. Chen, Am. J. Ceram. Soc. 94, 782 (2011)

    Article  CAS  Google Scholar 

  68. R. Gerhardt, Phys. J. Chem. Solids. 55, 1491 (1994)

    Article  CAS  Google Scholar 

  69. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5576 (2003)

    Article  CAS  Google Scholar 

  70. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  71. N. Kumar, A. Dutta, S. Prasad, T.P. Sinha, J. Alloys Compd. 511, 144 (2012)

    Article  CAS  Google Scholar 

  72. H.L. Tuller, A.S. Nowick, Phys. J. Chem. Solids. 38, 859 (1977)

    Article  CAS  Google Scholar 

  73. P.M. Chaikin, G. Beni, Phys. Rev. B 13, 647 (1976)

    Article  CAS  Google Scholar 

  74. R.R. Heikes, in Thermoelectricity, ed. by R.R. Heikes , W.U. Ure (Interscience Publishers, New York, 1961)

    Google Scholar 

  75. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  76. Q. Wang, G. Lian, E.C. Dickey, Acta Mater. 52, 809 (2004)

    Article  CAS  Google Scholar 

  77. W. Su, J. Wang, H. Chen, W. Wang, G. Zhang, Appl. J. Phys. B 92, 4779 (2002)

    CAS  Google Scholar 

  78. W. Su, J. Wang, H. Chen, G. Zang, P. Qi, C. Wang, Key Eng. Mater. B 280–283, 289 (2005)

    Article  Google Scholar 

  79. A.I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, T. Mitsui, Phys. Rev. B 77, 014302 (2008)

    Article  Google Scholar 

  80. A. Iwaszuk, M. Nolan, J. Phys.: Condens. Matter. 23, 334207 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schmidbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehr, K.T., Hochleitner, R. & Schmidbauer, E. Electrical properties of rutile-type relaxor ferroelectric-like Fe0.9W0.05TiMO6 (M = Ta,Nb) ceramics. J Electroceram 30, 191–205 (2013). https://doi.org/10.1007/s10832-013-9783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9783-2

Keywords

Navigation