Skip to main content
Log in

Piezoelectric materials for high frequency medical imaging applications: A review

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The performance of transducers operating at high frequencies is greatly influenced by the properties of the piezoelectric materials used in their fabrication. Selection of an appropriate material for a transducer is based upon many factors, including material properties, transducer area, and frequency of operation. This review article outlines the major developments in the field of piezoelectrics with emphasis on materials suitable for the design of high frequency medical imaging ultrasonic transducers. Recent developments in the areas of fine grain and thin film ceramics, piezo-polymers, single crystal relaxor piezoelectrics, as well as lead-free and composite materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.K. Shung, M.J. Zipparo, IEEE Eng. Med. Biol. Mag. 15, 20 (1996)

    Article  Google Scholar 

  2. G.R. Lockwood, D.H. Turnbull, D.A. Christopher, F.S. Foster, IEEE Eng. Med. Biol. Mag. 15, 60 (1996)

    Article  Google Scholar 

  3. W.S. Hackenberger, N. Kim, C.A. Randall, W. Cao, T.R. Shrout, in Proc. 1996 IEEE App. of Ferroelect., vol. 2, (1996) p. 903

  4. D.S. Yu, J.C. Han, L. Ba, Am. Ceram. Soc. Bull. 81, 38 (2002)

    CAS  Google Scholar 

  5. S.E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)

    Article  Google Scholar 

  6. T.A. Ritter, X. Geng, K.K. Shung, P.D. Lopath, S.-E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 792 (2000)

    Article  CAS  Google Scholar 

  7. C.G. Oakley, M.J. Zipparo, in Proc. 2000 IEEE Ultrason. Symp., vol. 2, (2000), p. 1157

  8. G.S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, New Jersey, 1987)

    Google Scholar 

  9. L.F. Brown, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1377 (2000)

    Article  CAS  Google Scholar 

  10. Measurement Specialties Inc. http://www.meas-spec.com

  11. M.J. Zipparo, K.K. Shung, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1038 (1997)

    Article  Google Scholar 

  12. K.A. Snook, C.-H. Hu, T.R. Shrout, K.K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 300 (2006)

    Article  Google Scholar 

  13. R. Zhang, B. Jiang, W. Cao, J. Appl. Phys. 90, 3471 (2001)

    Article  CAS  Google Scholar 

  14. H. C. Materials Corporation http://www.hcmat.com

  15. K.K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (Taylor & Francis, Florida, 2006), p. 44

    Google Scholar 

  16. T.A. Ritter, K.K. Shung, W. Cao, T.R. Shrout, J. Appl. Phys. 88, 394 (2000)

    Article  CAS  Google Scholar 

  17. H. Wang, B. Jiang, T.R. Shrout, W. Cao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 908 (2004)

    Article  Google Scholar 

  18. L.F. Brown, in Proc. 1992 IEEE Ultrason. Symp., vol. 1, (1992), p. 539

  19. M.D. Sherar, F.S. Foster, Ultrason. Imag. 11, 75 (1989)

    Article  CAS  Google Scholar 

  20. J.A. Ketterling, O. Aristizábal, D.H. Turnbull, F.L. Lizzi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 672 (2005)

    Article  Google Scholar 

  21. M. Robert, G. Molingou, K. Snook, J. Cannata, K.K. Shung, J. Appl. Phys. 96(1), 252 (2004)

    Article  CAS  Google Scholar 

  22. E.J. Gottlieb, J.M. Cannata, C.-H. Hu, K.K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1037 (2006)

    Article  Google Scholar 

  23. W.A. Smith, in Proc. 1989 IEEE Ultrason. Symp., vol. 1, (1989), p. 755

  24. R. Liu, K.A. Harasiewicz, F.S. Foster, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 299 (2001)

    Article  CAS  Google Scholar 

  25. J. Yin, M. Lukacs, K. Harasiewicz, F.S. Foster, in Proc. 2004 IEEE Ultrason Symp., vol. 3, (2004), p. 1962

  26. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)

    Article  CAS  Google Scholar 

  27. H.P. Savakas, K.A. Klicker, R.E. Newnham, Mater. Res. Bull. 16, 677 (1981)

    Article  Google Scholar 

  28. T.A. Ritter, T.R. Shrout, R. Tutwiler, K.K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 217 (2002)

    Article  Google Scholar 

  29. W. Hackenberger, S. Kwon, P. Rehrig, K. Snook, S. Rhee, X. Geng, in Proc 2002 IEEE Ultrason. Symp., vol. 2, (2002), p. 1253

  30. S. Cochran, A. Abrar, K.J. Fox, D. Zhang, T.W. Button, B. Su, C. Meggs, N. Porch, in Proc. 2004 IEEE Ultrason. Symp., vol. 3, (2004), p. 1682

  31. S. Zhang, S. Priya, E. Furman, T. Shrout, C. Randall, J. Appl. Phys. 91, 6002 (2002)

    Article  CAS  Google Scholar 

  32. Q.F. Zhou, Q. Zhang, T. Yoshimura, S. Trolier-McKinstry, Appl. Phys. Lett. 82, 4767 (2003)

    Article  CAS  Google Scholar 

  33. J. Chen, R. Panda, in Proc. 2005 IEEE Ultrason. Symp., 235 (2005)

  34. S. Saitoh, T. Takeuchi, T. Kobayashi, K. Harada, S. Shimanuki, Y. Yamashita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 6, 1109 (1999)

    Google Scholar 

  35. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature (London) 42, 84 (2004)

    Article  CAS  Google Scholar 

  36. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)

    Article  CAS  Google Scholar 

  37. J.M. Cannata, T.A. Ritter, W.H. Chen, R.H. Silverman, K.K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1548 (2003)

    Article  Google Scholar 

  38. N.M. Kari, T.A. Ritter, S.E. Park, T.R. Shrout, K.K. Shung, in Proc. 2000 IEEE Ultrason. Symp., vol. 2, (2000), p. 1065

  39. Q.F. Zhou, J.M. Cannata, H.K. Guo, K.K. Shung, C.Z. Huang, V.Z. Marmarelis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 127 (2005)

    Article  Google Scholar 

  40. D.J. Coleman, R.H. Silverman, A. Chabi, M.J. Rondeau, K.K. Shung, J.M. Cannata, H. Lincoff, Ophthalmology 111, 1344 (2004)

    Article  Google Scholar 

  41. R.H. Silverman, J.M. Cannata, K.K. Shung, O. Gal, M. Patel, H.O. Lloyd, E.J. Feleppa, D.J. Coleman, Ultrason. Imag. 28, 1 (2006)

    Google Scholar 

  42. S. Sugiyama, A. Takagi, K. Tsuzuki, Jpn. J. Appl. Phys. 30, 2170 (1991)

    Article  CAS  Google Scholar 

  43. D.A. Barrow, T.E. Petroff, M. Sayer, Surf. Coat. Technol. 76, 113 (1995)

    Article  Google Scholar 

  44. M. Lukacs, M. Sayer, S. Foster, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 148 (2000)

    Article  CAS  Google Scholar 

  45. H.D. Chen, K.R. Udayakumar, C.J. Gaskey, L.E. Cross, J. Am. Ceram. Soc. 79, 2189 (1996)

    Article  CAS  Google Scholar 

  46. R. Kurchania, S.J. Milne, J. Mat. Res. 14, 1852 (1999)

    CAS  Google Scholar 

  47. Q.F. Zhou, H.L.W. Chan, C.L. Choy, Thin Solid Films 375, 95 (2000)

    Article  CAS  Google Scholar 

  48. Q.F. Zhou, J.M. Cannata, R.J. Meyer, J.D. Van Tol, W.J. Hughes, K.K. Shung, S. Trolier-McKinstry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 350 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

Financial support was provided through by NIH grant # P41-EB2182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. F. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shung, K.K., Cannata, J.M. & Zhou, Q.F. Piezoelectric materials for high frequency medical imaging applications: A review. J Electroceram 19, 141–147 (2007). https://doi.org/10.1007/s10832-007-9044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9044-3

Keywords

Navigation