Skip to main content
Log in

Dysfunctional mode switching between fixation and saccades: collaborative insights into two unusual clinical disorders

  • Original Article
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Voluntary rapid eye movements (saccades) redirect the fovea toward objects of visual interest. The saccadic system can be considered as a dual-mode system: in one mode the eye is fixating, in the other it is making a saccade. In this review, we consider two examples of dysfunctional saccades, interrupted saccades in late-onset Tay-Sachs disease and gaze-position dependent opsoclonus after concussion, which fail to properly shift between fixation and saccade modes. Insights and benefits gained from bi-directional collaborative exchange between clinical and basic scientists are emphasized. In the case of interrupted saccades, existing mathematical models were sufficiently detailed to provide support for the cause of interrupted saccades. In the case of gaze-position dependent opsoclonus, existing models could not explain the behavior, but further development provided a reasonable hypothesis for the mechanism underlying the behavior. Collaboration between clinical and basic science is a rich source of progress for developing biologically plausible models and understanding neurological disease. Approaching a clinical problem with a specific hypothesis (model) in mind often prompts new experimental tests and provides insights into basic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability and material

The authors agree to make data beyond that included in the publication accessible if requested.

Code availability

The authors agree to make code available if requested.

References

  • Bertolini, G., Tarnutzer, A. A., Olasagasti, I., Khojasteh, E., Weber, K. P., Bockisch, C. J., Straumann, D., & Marti, S. (2013). Gaze holding in healthy subjects. PLoS One, 8, e61389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bockisch, C. J., Khojasteh, E., Straumann, D., & Hegemann, S. C. (2013). Eye position dependency of nystagmus during constant vestibular stimulation. Experimental Brain Research, 226, 175–182.

    Article  PubMed  Google Scholar 

  • Büttner-Ennever, J. A., Cohen, B., Pause, M., & Fries, W. (1988). Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. The Journal of Comparative Neurology, 267, 307–321.

    Article  PubMed  Google Scholar 

  • Chan, W., & Galiana, H. L. (2010). A nonlinear model of the neural integrator improves detection of deficits in the human VOR. IEEE Transactions on Biomedical Engineering, 57, 1012–1023.

    Article  PubMed  Google Scholar 

  • Chan, W. W., & Galiana, H. L. (2005). Integrator function in the oculomotor system is dependent on sensory context. Journal of Neurophysiology, 93, 3709–3717.

    Article  CAS  PubMed  Google Scholar 

  • Chan, W. W., & Galiana, H. L. (2008). Modeling the nonlinear context dependency of the neural integrator in the vestibuloocular reflex. IEEE Transactions on Biomedical Engineering, 55, 1946–1955.

    Article  PubMed  Google Scholar 

  • Crawford, J. D., & Vilis, T. (1993). Modularity and parallel processing in the oculomotor integrator. Experimental Brain Research, 96, 443–456.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, K. E., & Guitton, D. (1997). Analysis of primate IBN spike trains using system identification techniques. II. Relationship to gaze, eye, and head movement dynamics during head-free gaze shifts. Journal of Neurophysiology 78: 3283–3306.

  • Daye, P. M., Optican, L. M., Roze, E., Gaymard, B., & Pouget, P. (2013). Neuromimetic model of saccades for localizing deficits in an atypical eye-movement pathology. Journal of Translational Medicine, 11, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evinger, C., Kaneko, C. R., & Fuchs, A. F. (1982). Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. Journal of Neurophysiology, 47, 827–844.

    Article  CAS  PubMed  Google Scholar 

  • Hain, T. C., Zee, D. S., & Mordes, M. (1986). Blink-induced saccadic oscillations. Annals of Neurology, 19, 299–301.

    Article  CAS  PubMed  Google Scholar 

  • Heitger, M. H., Anderson, T. J., & Jones, R. D. (2002). Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Progress in Brain Research, 140, 433–448.

    Article  CAS  PubMed  Google Scholar 

  • Heitger, M. H., Anderson, T. J., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., & Ardagh, M. W. (2004). Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain, 127, 575–590.

    Article  PubMed  Google Scholar 

  • Helmchen C, Rambold H, Sprenger A, Erdmann C, Binkofski F, and f MRIsan fMRI study. (2003). Cerebellar activation in opsoclonus. Neurology, 61, 412–415.

    Article  Google Scholar 

  • Helmchen, C., Straube, A., & Büttner, U. (1994). Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Experimental Brain Research, 98, 474–482.

    Article  CAS  PubMed  Google Scholar 

  • Horn, A. K., Büttner-Ennever, J. A., Suzuki, Y., & Henn, V. (1995). Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. The Journal of Comparative Neurology, 359, 350–363.

    Article  CAS  PubMed  Google Scholar 

  • Horn, A. K., Büttner-Ennever, J. A., Wahle, P., & Reichenberger, I. (1994). Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. Journal of Neuroscience, 14, 2032–2046.

    Article  CAS  PubMed  Google Scholar 

  • Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. The Journal of Comparative Neurology, 253, 415–439.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, C. R. (1996). Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. Journal of Neurophysiology, 75, 2229–2242.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E. L., Gandhi, N. J., & Shieh, J. M. (1996). Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Visual Neuroscience, 13, 1059–1067.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E. L., Gandhi, N. J., & Vijay, S. S. (2000). Activity in deep intermediate layer collicular neurons during interrupted saccades. Experimental Brain Research, 130, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E. L., & Missal, M. (2003). Shared brainstem pathways for saccades and smooth-pursuit eye movements. Annals of the New York Academy of Sciences, 1004, 29–39.

    Article  PubMed  Google Scholar 

  • Kepski, A. (1983). Clinical aspects and prognosis in cerebellar concussion syndromes. Neurologia i Neurochirurgia Polska, 17, 239–243.

    CAS  PubMed  Google Scholar 

  • Khojasteh, E., Bockisch, C. J., Straumann, D., & Hegemann, S. C. (2013). A dynamic model for eye-position-dependence of spontaneous nystagmus in acute unilateral vestibular deficit (Alexander’s Law). European Journal of Neuroscience, 37, 141–149.

    Article  Google Scholar 

  • Lefevre, P., Quaia, C., & Optican, L. M. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks, 11, 1175–1190.

    Article  PubMed  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. Oxford ; New York: Oxford University Press, p. xx, 1109 pages.

  • Meabon, J. S., Huber, B. R., Cross, D. J., Richards, T. L., Minoshima, S., Pagulayan, K., ... & Cook, D. G. (2016). Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 8: 321ra326.

  • Missal, M., & Heinen, S. J. (2017). Stopping smooth pursuit. Philosophical Transactions of the Royal Society B: Biological Sciences 372.

  • Missal, M., & Keller, E. L. (2002). Common inhibitory mechanism for saccades and smooth-pursuit eye movements. Journal of Neurophysiology, 88, 1880–1892.

    Article  CAS  PubMed  Google Scholar 

  • Miura, K., & Optican, L. M. (2006). Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. Journal of Computational Neuroscience, 20, 25–41.

    Article  PubMed  Google Scholar 

  • Ohtsuka, K., & Noda, H. (1995). Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. Journal of Neurophysiology, 74, 1828–1840.

    Article  CAS  PubMed  Google Scholar 

  • Optican, L. M., & Pretegiani, E. (2017). A GABAergic Dysfunction in the Olivary-Cerebellar-Brainstem Network May Cause Eye Oscillations and Body Tremor. II. Model Simulations of Saccadic Eye Oscillations. Frontiers of Neurology 8: 372.

  • Optican, L. M., & Quaia, C. (2002). Distributed model of collicular and cerebellar function during saccades. Annals of the New York Academy of Sciences, 956, 164–177.

    Article  PubMed  Google Scholar 

  • Optican, L. M., Rucker, J. C., Keller, E. L., & Leigh, R. J. (2008). Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease. Progress in Brain Research, 171, 567–570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Optican, L. M., Rucker, J. C., Rizzo, J. R., & Hudson, T. E. (2019). Modeling gaze position-dependent opsoclonus. Progress in Brain Research, 249, 35–61.

    Article  PubMed  Google Scholar 

  • Pretegiani, E., Rosini, F., Rocchi, R., Ginanneschi, F., Vinciguerra, C., Optican, L. M., & Rufa, A. (2017). GABAAergic dysfunction in the olivary-cerebellar-brainstem network may cause eye oscillations and body tremor. Clinical Neurophysiology, 128, 408–410.

    Article  PubMed  Google Scholar 

  • Quaia, C., Lefevre, P., & Optican, L. M. (1999). Model of the control of saccades by superior colliculus and cerebellum. Journal of Neurophysiology, 82, 999–1018.

    Article  CAS  PubMed  Google Scholar 

  • Ramat, S., Leigh, R. J., Zee, D. S., & Optican, L. M. (2005). Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Experimental Brain Research, 160, 89–106.

    Article  PubMed  Google Scholar 

  • Ramat, S., Leigh, R. J., Zee, D. S., & Optican, L. M. (2007). What clinical disorders tell us about the neural control of saccadic eye movements. Brain, 130, 10–35.

    Article  PubMed  Google Scholar 

  • Ramat, S., Leigh, R. J., Zee, D. S., Shaikh, A. G., & Optican, L. M. (2008). Applying saccade models to account for oscillations. Progress in Brain Research, 171, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Rivaud, S., Muri, R. M., Gaymard, B., Vermersch, A. I., & Pierrot-Deseilligny, C. (1994). Eye movement disorders after frontal eye field lesions in humans. Experimental Brain Research, 102, 110–120.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo, J. R., Hudson, T. E., Sequeira, A. J., Dai, W., Chaudhry, Y., Martone, J., Zee, D. S., Optican, L. M., Balcer, L. J., Galetta, S. L., & Rucker, J. C. (2019). Eye position-dependent opsoclonus in mild traumatic brain injury. Progress in Brain Research, 249, 65–78.

    Article  PubMed  Google Scholar 

  • Rucker, J. C., Leigh, R. J., Optican, L. M., Keller, E. L., & Bu Ttner-Ennever, J. A. (2008). Ocular motor anatomy in a case of interrupted saccades. Progress in Brain Research, 171, 563–566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rucker, J. C., Shapiro, B. E., Han, Y. H., Kumar, A. N., Garbutt, S., Keller, E. L., & Leigh, R. J. (2004). Neuro-ophthalmology of late-onset Tay-Sachs disease (LOTS). Neurology, 63, 1918–1926.

    Article  CAS  PubMed  Google Scholar 

  • Rucker, J. C., Ying, S. H., Moore, W., Optican, L. M., Büttner-Ennever, J., Keller, E. L., Shapiro, B. E., & Leigh, R. J. (2011). Do brainstem omnipause neurons terminate saccades? Annals of the New York Academy of Sciences, 1233, 48–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Journal of Neurophysiology, 68, 1967–1985.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda, Y., Sugiuchi, Y., Takahashi, M., & Izawa, Y. (2011). Neural substrate for suppression of omnipause neurons at the onset of saccades. Annals of the New York Academy of Sciences, 1233, 100–106.

    Article  PubMed  Google Scholar 

  • Shook, B. L., Schlag-Rey, M., & Schlag, J. (1988). Direct projection from the supplementary eye field to the nucleus raphe interpositus. Experimental Brain Research, 73, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Shook, B. L., Schlag-Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. The Journal of Comparative Neurology 301: 618–642.

  • Soetedjo, R., Kaneko, C. R., & Fuchs, A. F. (2002). Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. Journal of Neurophysiology, 87, 679–695.

    Article  PubMed  Google Scholar 

  • Stanton, GB., Goldberg, M. E., & Bruce, C. J. (1988). Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. The Journal of Comparative Neurology 271: 493–506.

  • Strassman, A., Highstein. S. M., & McCrea, R. A. (1986). Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. The Journal of Comparative Neurology 249: 358–380.

  • Thier, P., Dicke, P. W., Haas, R., & Barash, S. (2000). Encoding of movement time by populations of cerebellar Purkinje cells. Nature, 405, 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Thier, P., Dicke, P. W., Haas, R., Thielert, C. D., & Catz, N. (2002). The role of the oculomotor vermis in the control of saccadic eye movements. Annals of the New York Academy of Sciences, 978, 50–62.

    Article  PubMed  Google Scholar 

  • Tusa, R. J., Zee, D. S., & Herdman, S. J. (1986). Effect of unilateral cerebral cortical lesions on ocular motor behavior in monkeys: saccades and quick phases. Journal of Neurophysiology, 56, 1590–1625.

    Article  CAS  PubMed  Google Scholar 

  • Van Gisbergen, J. A., Robinson, D. A., & Gielen, S. (1981). A quantitative analysis of generation of saccadic eye movements by burst neurons. Journal of Neurophysiology, 45, 417–442.

    Article  PubMed  Google Scholar 

  • Van Horn, M. R., Sylvestre, P. A., & Cullen, K. E. (2008). The brain stem saccadic burst generator encodes gaze in three-dimensional space. Journal of Neurophysiology, 99, 2602–2616.

    Article  PubMed  Google Scholar 

  • Waitzman, D. M., Silakov, V. L., & Cohen, B. (1996). Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. Journal of Neurophysiology, 75, 1546–1572.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, K., Iwamoto, Y., Chimoto, S., & Shimazu, H. (1999). Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. Journal of Neurophysiology, 82, 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  • Zee, D. S., & Robinson, D. A. (1979). A hypothetical explanation of saccadic oscillations. Annals of Neurology, 5, 405–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported, in part, by the Intramural Research Program of the NEI, NIH.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the studies reviewed: JCR, RJL, JAB, AH, JRR, TEH, LMO.

Acquisition and analysis of data: JCR, RJL, JAB, AH, JRR, TEH, LMO.

Substantial manuscript drafting: JCR, LMO.

Editing and approval of final manuscript: JCR, RJL, JAB, AH, JRR, TEH, LMO.

Corresponding author

Correspondence to Janet C. Rucker.

Ethics declarations

Ethics approval

All research protocols were approved by the NYU Institutional Review Board.

Consent to participate

Written informed consent for participation was obtained from each participant.

Consent for publication

Written informed consent for publication was obtained from each participant. No private health information is included for publication.

Conflict of interest

No author has pertinent disclosures.

Additional information

Action Editor: Aasef G. Shaikh

This article belongs to the Topical Collection: Vision and Action

Guest Editors: Aasef Shaikh and Jeffrey Shall

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rucker, J.C., Rizzo, JR., Hudson, T.E. et al. Dysfunctional mode switching between fixation and saccades: collaborative insights into two unusual clinical disorders. J Comput Neurosci 49, 283–293 (2021). https://doi.org/10.1007/s10827-021-00785-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00785-6

Keywords

Navigation