Skip to main content
Log in

Macaque monkeys show reversed ocular following responses to two-frame-motion stimulus presented with inter-stimulus intervals

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

When two-frame apparent motion stimuli are presented with an appropriate inter-stimulus interval (ISI), motion is perceived in the direction opposite to the actual image shift. Herein, we measured a simple eye movement, ocular following responses (OFRs), in macaque monkeys to examine the ISI reversal effect on oculomotor. Two-frame movies with an ISI induced reversed OFRs. Without ISI, the OFRs to the two-frame movie were induced in the direction of the stimulus shift. However, with ISIs ≥10 ms, OFRs in the direction opposite to the phase shift were observed. This directional reversal persisted for ISIs up to 160 ms; for longer ISIs virtually no ocular response was observed. Furthermore, longer exposure to the initial image (Motion onset delay: MOD) reduced OFRs. We show that these dependences on ISIs/MODs can be explained by the motion energy model. Furthermore, we examined the dependence on ISI reversal using various spatial frequencies. To account for our findings, the optimal frequency of the temporal filters of the energy model must decrease between 0.5 and 1 cycles/°, suggesting that there are at least two channels with different temporal characteristics. These results are consistent with those from humans, suggesting that the temporal filters embedded in human and macaque visual systems are similar. Thus, the macaque monkey is a good animal model for the early visual processing of humans to understand the neural substrates underlying the visual motion detectors that elicit OFRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299.

    Article  CAS  Google Scholar 

  • Boulton, J. C., & Baker Jr., C. L. (1993). Dependence on stimulus onset asynchrony in apparent motion: Evidence for two mechanisms. Vision Research, 33(14), 2013–2019.

    Article  CAS  Google Scholar 

  • Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290(1038), 137–151.

    CAS  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.

    Article  CAS  Google Scholar 

  • Gellman, R. S., Carl, J. R., & Miles, F. A. (1990). Short latency ocular-following responses in man. Visual Neuroscience, 5(2), 107–122.

    Article  CAS  Google Scholar 

  • Hays, A. V., Richmond, B. J., & Optican, L. M. (1982). A UNIX-based multiple process system for real-time data acquisition and control. WESCON Conf Proc, 2(1), 1–10.

    Google Scholar 

  • Judge, S. J., Richmond B. J., & Chu, F. C. (1980). Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Research, 20, 535–538.

  • Kawano, K. (1999). Ocular tracking: Behavior and neurophysiology. Current Opinion in Neurobiology, 9(4), 467–473.

    Article  CAS  Google Scholar 

  • Kawano, K., Inoue, Y., Takemura, A., Kodaka, Y., & Miles, F. A. (2000). The role of MST neurons during ocular tracking in 3D space. International Review of Neurobiology, 44, 49–63. https://doi.org/10.1016/s0074-7742(08)60737-0.

    Article  CAS  PubMed  Google Scholar 

  • Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology, 71(6), 2305–2324.

    Article  CAS  Google Scholar 

  • Liu, B. H., Huberman, A. D., & Scanziani, M. (2016). Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature, 538(7625), 383–387.

    Article  CAS  Google Scholar 

  • Matsuura, K., Miura, K., Taki, M., Tabata, H., Inaba, N., Kawano, K., & Miles, F. A. (2008). Ocular following responses of monkeys to the competing motions of two sinusoidal gratings. Neuroscience Research, 61(1), 56–69. https://doi.org/10.1016/j.neures.2008.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles, F. A., Kawano, K., & Optican, L. M. (1986). Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J Neurophysiol, 56(5), 1321–1354.

    Article  CAS  Google Scholar 

  • Miura, K., Inaba, N., Aoki, Y., & Kawano, K. (2014). Difference in visual motion representation between cortical areas MT and MST during ocular following responses. The Journal of Neuroscience, 34(6), 2160–2168.

    Article  CAS  Google Scholar 

  • Miura, K., Matsuura, K., Taki, M., Tabata, H., Inaba, N., Kawano, K., & Miles, F. A. (2006). The visual motion detectors underlying ocular following responses in monkeys. Vision Research, 46(6–7), 869–878.

    Article  Google Scholar 

  • Miura, K., Sugita, Y., Furukawa, T., & Kawano, K. (2018). Two-frame apparent motion presented with an inter-stimulus interval reverses optokinetic responses in mice. Scientific Reports, 8(1), 17816. https://doi.org/10.1038/s41598-018-36260-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura, K., Takemura, A., Taki, M., & Kawano, K. (2019). Model of optokinetic responses involving two different visual motion processing pathways. Progress in Brain Research, 248, 329–340. https://doi.org/10.1016/bs.pbr.2019.02.005.

    Article  PubMed  Google Scholar 

  • Nohara, S., Kawano, K., & Miura, K. (2015). Difference in perceptual and oculomotor responses revealed by apparent motion stimuli presented with an interstimulus interval. [research support, non-U.S. Gov't]. Journal of Neurophysiology, 113(9), 3219–3228. https://doi.org/10.1152/jn.00647.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohnishi, Y., Kawano, K., & Miura, K. (2016). Temporal impulse response function of the visual system estimated from ocular following responses in humans. Neuroscience Research, 113, 56–62.

    Article  Google Scholar 

  • Pantle, A., & Turano, K. (1992). Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli. Vision Research, 32(11), 2093–2106.

    Article  CAS  Google Scholar 

  • Sheliga, B. M., Chen, K. J., FitzGibbon, E. J., & Miles, F. A. (2005). Initial ocular following in humans: A response to first-order motion energy. Vision Research, 45, 3307–3321.

    Article  CAS  Google Scholar 

  • Sheliga, B. M., Chen, K. J., FitzGibbon, E. J., & Miles, F. A. (2006a). The initial ocular following responses elicited by apparent-motion stimuli: Reversal by inter-stimulus intervals. Vision Research, 46(6–7), 979–992.

    Article  CAS  Google Scholar 

  • Sheliga, B. M., Kodaka, Y., FitzGibbon, E. J., & Miles, F. A. (2006b). Human ocular following initiated by competing image motions: Evidence for a winner-take-all mechanism. Vision Research, 46(13), 2041–2060. https://doi.org/10.1016/j.visres.2005.11.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shioiri, S., & Cavanagh, P. (1990). ISI produces reverse apparent motion. Vision Research, 30(5), 757–768.

    Article  CAS  Google Scholar 

  • Strout, J. J., Pantle, A., & Mills, S. L. (1994). An energy model of interframe interval effects in single-step apparent motion. Vision Res, 34(23), 3223-3240, 0042-6989(94)90086-8 [pii].

  • Sugita, Y., Miura, K., & Furukawa, T. (2020). Retinal ON and OFF pathways contribute to initial optokinetic responses with different temporal characteristics. The European Journal of Neuroscience. https://doi.org/10.1111/ejn.14697.

  • Takemura, A., Inoue, Y., & Kawano, K. (2000). The effect of disparity on the very earliest ocular following responses and the initial neuronal activity in monkey cortical area MST. Neuroscience Research, 38(1), 93–101. https://doi.org/10.1016/s0168-0102(00)00149-8.

    Article  CAS  PubMed  Google Scholar 

  • Takemura, A., Inoue, Y., & Kawano, K. (2002). Visually driven eye movements elicited at ultra-short latency are severely impaired by MST lesions. Annals of the New York Academy of Sciences, 956, 456–459. https://doi.org/10.1111/j.1749-6632.2002.tb02854.x.

    Article  PubMed  Google Scholar 

  • Takemura, A., & Kawano, K. (2006). Neuronal responses in MST reflect the post-saccadic enhancement of short-latency ocular following responses. Experimental Brain Research, 173(1), 174–179. https://doi.org/10.1007/s00221-006-0460-4.

    Article  PubMed  Google Scholar 

  • Takemura, A., Murata, Y., Kawano, K., & Miles, F. A. (2007). Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST. J Neurosci, 27(3), 529–541. https://doi.org/10.1523/JNEUROSCI.3455-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi, T., & De Valois, K. K. (1997). Motion-reversal reveals two motion mechanisms functioning in scotopic vision. Vision Research, 37(6), 745–755.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. N. Kunori for valuable experimental assistance. We thank Ms. A. Muramatsu and Mr. T. Takasu-Mega for technical assistance and Ms. E. Shioya for secretarial assistance. This research was supported by KAKENHI (15K12134, 15K6709, 16H03297, 19K07840, 20K06920) and by the New Energy and Industrial Technology Development Organization (NEDO).

Funding

KAKENHI (15K12134, 15K6709, 16H03297, 19K07804, 20K06920), the New Energy and Industrial, Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Miura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes are available from the corresponding author on.

reasonable request.

Additional information

Action Editor: Aasef G. Shaikh

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Vision and Action

Guest Editors: Aasef Shaikh and Jeffrey Shall

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemura, A., Matsumoto, J., Hashimoto, R. et al. Macaque monkeys show reversed ocular following responses to two-frame-motion stimulus presented with inter-stimulus intervals. J Comput Neurosci 49, 273–282 (2021). https://doi.org/10.1007/s10827-020-00756-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00756-3

Keywords

Navigation