Skip to main content

Advertisement

Log in

Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether MPR is simply an epiphenomenon or it plays a functional role for the generation of neuronal network oscillations and how the latent time scales present in individual, non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded are open questions. We address these issues by investigating a minimal network model consisting of (i) a non-oscillatory linear resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-pass filter) with 1D linear dynamics, and (iii) nonlinear graded synaptic connections (excitatory or inhibitory) with instantaneous dynamics. We demonstrate that (i) the network oscillations crucially depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity, (iii) they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and (iv) the network frequency monotonically depends on the resonators resonant frequency. We explain these phenomena using a reduced adapted version of the classical phase-plane analysis that helps uncovering the type of effective network nonlinearities that contribute to the generation of network oscillations. We extend our results to networks having cells with 2D dynamics. Our results have direct implications for network models of firing rate type and other biological oscillatory networks (e.g, biochemical, genetic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ambrosio-Mouser, C., Nadim, F., Bose, A. (2006). The effects of varying the timing of inputs on a neural oscillator. SIAM Journal on Applied Dynamical Systems, 5, 108–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Art, J.J., Crawford, A.C., Fettiplace, R. (1986). Electrical resonance and membrane currents in turtle cochlear hair cells. Hearing Research, 22, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Baroni, F., Burkitt, A.N., Grayden, D.B. (2014). Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking. PLoS Computational Biology, 10, e1003574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty, J., Song, S.C., Wilson, C.J. (2015). Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. Journal of Neurophysiology, 113, 688–700.

    Article  PubMed  Google Scholar 

  • Beer, R. (1995). On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior, 4, 471–511.

    Google Scholar 

  • Boehlen, A., Heinemann, U., Erchova, I. (2010). The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. The Journal of Neuroscience, 30, 4585–4589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlen, A., Henneberger, C., Heinemann, U., Erchova, I. (2013). Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II, stellate cells. Journal of Neurophysiology, 109, 445–463.

    Article  PubMed  Google Scholar 

  • Borgers, C. (2017). An introduction to modeling neuronal dynamics. Berlin: Springer.

    Book  Google Scholar 

  • Brea, J.N., Kay, L.M., Kopell, N.J. (2009). Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations. Proceedings of the National Academy of Sciences of the United States of America, 106, 21954–21959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burden, R.L., & Faires, J.D. (1980). Numerical analysis. Boston: PWS Publishing Company.

    Google Scholar 

  • Chen, Y., Li, X., Rotstein, H.G., gap, F. Nadim. (2016). Membrane potential resonance frequency directly influences network frequency through junctions. Journal of Neurophysiology, 116, 1554–1563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtu, R., & Rubin, J. (2011). Interaction of canard and singular Hopf mechanisms in a neural model. SIAM Journal on Applied Dynamical Systems, 4, 1443–1479.

    Article  Google Scholar 

  • D’angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., Naldi, G. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: Experimental evidence and modeling of a slow K+ - dependent mechanism. The Journal of Neuroscience, 21, 759–770.

    Article  PubMed  Google Scholar 

  • D’Angelo, E., Koekkoek, S.K.E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., De Zeeuw, C.I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • David, F., Courtiol, E., Buonviso, N., Fourcaud-Trocme, N. (2015). Competing mechanisms of gamma and beta oscillations in the olfactory bulb based on multimodal inhibition of mitral cells over a respiratory cycle. eNeuro, 2, e0018–15.2015.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2001). Theoretical Neuroscience. Cambridge: MIT Press.

    Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Yu.A. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164.

    Article  Google Scholar 

  • Engel, T.A., Schimansky-Geier, L., Herz, A.V., Schreiber, S., Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100, 1576–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., Herz, A.V.M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. Journal of Physiology, 560, 89–110.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G.B., & Terman, D. (2010). Mathematical foundations of neuroscience. Berlin: Springer.

    Book  Google Scholar 

  • Fox, D.M., Tseng, H., Smolinsky, T., Rotstein, H.G., Nadim, F. (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Computational Biology, 13, e1005565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastrein, P., Campanac, E., Gasselin, C., Cudmore, R.H., Bialowas, A., Carlier, E., Fronzaroli-Molinieres, L., Ankri, N., Debanne, D. (2011). The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. The Journal of Physiology, 589, 3753–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies, M.J., Traub, R.D., LeBeau, F.E.N., Davies, C.H., Gloveli, T., Buhl, E.H., Whittington, M.A. (2002). A model of atropine-resistant theta oscillations in rat hippocampal area CA1. Journal of Physiology, 543.3, 779–793.

    Article  CAS  Google Scholar 

  • Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.

    Book  Google Scholar 

  • Gutfreund, Y., Yarom, Y., Segev, I. (1995). Subthreshold oscillations and resonant frequency in Guinea pig cortical neurons: Physiology and modeling. The Journal of Physiology, 483, 621–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys, J.G., Giacomo, L.M., Hasselmo, M.E. (2010). Cholinergic modulation of the resonance properties of stellate cells in layer II, of the medial entorhinal. Journal of Neurophysiology, 104, 258–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys, J.G., Schultheiss, N.W., Shay, C.F., Tsuno, Y., Hasselmo, M.E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in Behavioral Neuroscience, 6, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs, M.H., & Spain, W.J. (2009). Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. Australasian Journal of Neuroscience, 29, 1285–1299.

    Article  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conductance and excitation in nerve. The Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Vervaeke, K., Storm, J.F. (2002). Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. The Journal of Physiology, 545.3, 783–805.

    Article  CAS  Google Scholar 

  • Hu, H., Vervaeke, K., Graham, J.F., Storm, L.J. (2009). Complementary theta resonance filtering by two spatially segregated mechanisms in CA,1 hippocampal pyramidal neurons. Journal of Neuroscience, 29, 14472–14483.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., Miura, R.M., Puil, E. (1996). Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology, 76, 683–697.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends in Neurosciences, 23, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. (2006). Dynamical Systems in Neuroscience: The geometry of excitability and bursting. Cambridge: MIT Press.

    Book  Google Scholar 

  • Lampl, I, & Yarom, Y. (1997). Subthreshold oscillations and resonant behaviour: Two manifestations of the same mechanism. Neuroscience, 78, 325–341.

    Article  CAS  PubMed  Google Scholar 

  • Lau, T., & Zochowski, M. (2011). The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE, 6, e18983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5, 1–17.

    Article  Google Scholar 

  • Llinás, R. R., & Yarom, Y. (1986). Oscillatory properties of Guinea pig olivary neurons and their pharmachological modulation: An in vitro study. The Journal of Physiology, 376, 163–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loewenstein, Y., Yarom, Y., Sompolinsky, H. (2001). The generation of oscillations in networks of electrically coupled cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 8095–8100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manor, Y., Rinzel, J., Segev, I., Yarom, Y. (1997). Low-amplitude oscillations in the inferior olive A model based on electrical coupling of neurons with heterogeneous channel densities. Journal of Neurophysiology, 77, 2736–2752.

    Article  CAS  PubMed  Google Scholar 

  • Manor, Y., Nadim, F., Epstein, S., Ritt, J., Marder, E., Kopell, N. (1999). Network oscillations generated by balancing graded asymmetric reciprocal inhibition in passive neurons. Journal of Neuroscience, 19, 2765–2779.

    Article  CAS  PubMed  Google Scholar 

  • Marcelin, B., Becker, A., Migliore, M., Esclapez, M., Bernard, C. (2009). H channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of Disease, 33, 436–447.

    Article  CAS  PubMed  Google Scholar 

  • Mikiel-Hunter, J., Kotak, V., Rinzel, J. (2016). High-frequency resonance in the gerbil medial superior olive. PLoS Computational Biology, 12, 1005166.

    Article  CAS  Google Scholar 

  • Moca, V.V., Nicolic, D., Singer, W., Muresan, R. (2014). Membrane resonance enables stable robust gamma oscillations. Cerebral Cortex, 24, 119–142.

    Article  PubMed  Google Scholar 

  • Morris, H., & Lecar, C. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muresan, R., & Savin, C. (2007). Resonance or integration? self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97, 1911–1930.

    Article  PubMed  Google Scholar 

  • Narayanan, R., & Johnston, D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron, 56, 1061–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan, R., & Johnston, D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of Neuroscience, 28, 5846–5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan, M.F., Dudman, J.T., Dodson, P.D., Santoro, B. (2007). HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex, have been effectively employed for different. Journal of Neuroscience, 27, 12440–12551.

    Article  CAS  PubMed  Google Scholar 

  • Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., Paulsen, O. (2000). Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. Journal of Physiology, 529, 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Prinz, A.A., Abbott, L.F., Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2012). Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. Journal of Physiology, 590, 5629–5652.

    Article  CAS  PubMed  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2014). Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proceedings of the National Academy of Sciences of the United States of America, 111, E1787–E1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rau, F., Clemens, J., Naumov, V., Hennig, R.M., Schreiber, S. (2015). Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. Journal of Computational Physiology, 201, 1075–1090.

    Article  Google Scholar 

  • Remme, W.H., Donato, R., Mikiel-Hunter, J., Ballestero, J.A., Foster, S., Rinzel, J., McAlpine, D. (2014). Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proceedings of the National Academy of Sciences of the United States of America, 111, E2339–E2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, M.J.E., Brunel, N., Hakim, V. (2003). From subthreshold to firing-rate resonance. Journal of Neurophysiology, 89, 2538–2554.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G., Pervouchine, D., Gillies, M.J., Acker, C.D., White, J.A., Buhl, E.H., Whittington, M.A., Kopell, N. (2005). Slow and fast inhibition and h-current interact to create a theta rhythm in a model of CA1 interneuron networks. Journal of Neurophysiology, 94, 1509–1518.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2014a). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. The Journal of Mathematical Neuroscience, 4, 11.

  • Rotstein, H.G., & Nadim, F. (2014b). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9–28.

  • Rotstein, H.G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38, 325–354.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2017a). Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J. Comp. Neurosci., 43, 35–63.

  • Rotstein, H.G. (2017b). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience, 42, 133–166.

  • Rotstein, H.G. (2017c). Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. Journal of Computational Neuroscience, 43, 243–271.

  • Rotstein, H.G., Ito, T., stark, E. (2017d). Inhibition based theta spiking resonance in a hippocampal network. Society for Neuroscience Abstracts, 615, 11.

  • Schmidt, S.L., Dorsett, C.R., Iyengar, A.K., Frölich, F. (2016). Interaction of intrinsic and synaptic currents mediate network resonance driven by layer V pyramidal cells. Cereb. Cortex, page https://doi.org/10.1093/cercor/bhw242.

  • Schreiber, S., Erchova, I, Heinemann, U., Herz, A.V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92, 408–415.

    Article  PubMed  Google Scholar 

  • Sciamanna, G., & Wilson, C.J. (2011). The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. Journal of Neurophysiology, 106, 2936–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, A.A., O’Neil, M.B., Abbott, L.F., Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Shpiro, A., Moreno-Bote, R., Rubin, N., Rinzel, J. (2009). Balance between noise and adaptation in competition models of perceptual bistability. Journal of Computational Neuroscience, 27, 37–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner, F.K. (2006). Conductance-based models. Scholarpedia, 1, 1408.

    Article  Google Scholar 

  • Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., D’Angelo, E. (2007). Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Frontiers in Cellular Neuroscience, 1, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, S.C., Beatty, J.A., Wilson, C.J. (2016). The ionic mechanism of membrane potential oscillations and membrane resonance in striatal lts interneurons. Journal of Neurophysiology, 116, 1752–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G., Buzsáki, G. (2013). Inhibition-induced theta resonance in cortical circuits. Neuron, 80, 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Szucs, A., Ráktak, A., Schlett, K., Huerta, R. (2017). Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. European Journal of Neuroscience, 46, 2429–2444.

    Article  PubMed  Google Scholar 

  • Tabak, J., Rinzel, J., Bertram, R. (2011). Quantifying the relative contributions of divisive and substractive feedback to rhythm generation. PLoS Computational Biology, 7, e1001124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchumatchenko, T., & Clopath, C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature Communications, 5, 5512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikidji-Hamburyan, R.A., Martínez, J. J., White, J.A., Canavier, C. (2015). Resonant interneurons can increase robustness of gamma oscillations. Journal of Neuroscience, 35, 15682–15695.

    Article  CAS  PubMed  Google Scholar 

  • Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. The Journal of Neuroscience, 29, 6427–6435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torben-Nielsen, B., Segev, I., Yarom, Y. (2012). The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS Computational Biology, 8, 31002580.

    Article  CAS  Google Scholar 

  • Tseng, H., & Nadim, F. (2010). The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. The Journal of Neuroscience, 30, 10809–10819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Brederode, J.F.M., & Berger, A.J. (2008). Spike-firing resonance in hypoglossal motoneurons. Journal of Neurophysiology, 99, 2916–2928.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X.-J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.

    Article  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, N., Hsiao, C. -F., Chandler, S.H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. The Journal of Neuroscience, 21, 3729–3739.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Lin, W., Feng, A. A. (2009). Wide-ranging frequency preferences of auditory midbrain neurons Roles of membrane time constant and synaptic properties. The European Journal of Neuroscience, 30, 76–90.

    Article  PubMed  Google Scholar 

  • Zemankovics, R., Káli, S., Paulsen, O., Freund, T.F., Hájos, N. (2010). Differences in subthershold resonance of hippocampal pyramidal cells and interneurons: The role of h-current and passive membrane characteristics. The Journal of Physiology, 588, 2109–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation grant DMS-1608077 (HGR) and the Universidad Nacional del Sur grant PGI 24/L096 (AB). The authors thank Eran Stark for useful comments and discussions. HGR is grateful to the Courant Institute of Mathematical Sciences at NYU and the Department of Mathematics at Universidad Nacional del Sur, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein.

Additional information

Action Editor: Frances K. Skinner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Horacio G. Rotstein is also affiliated as Corresponding Investigator, CONICET, Argentina.

Appendices

Appendix A: Two-cell networks of passive cells do not produce limit cycle oscillations

Here we consider system (1) with gk = 0 (k = 1, 2) and Isyn,k given by (3) and (4).

1.1 A.1 Linearization and eigenvalues

The linearization of system (1) with gk = 0 (k = 1, 2) and Isyn,k given by Eqs. (3) and (4) reads

$$ \frac{dv_1}{dt} = F_{v_1} (v_1 - \bar{v}_1) + F_{v_2} (v_2-\bar{v}_2), $$
(16)
$$ \frac{dv_2}{dt} = G_{v_1} (v_1 - \bar{v}_1) + G_{v_2} (v_2-\bar{v}_2), $$
(17)

where

$$ C_1 F_{v_1} = -g_{L,1} - G_{syn,2,1} S_{\infty}(\bar{v}_2), \ \ \ \ \ \ \ $$
(18)
$$ C_1 F_{v_2} = -G_{syn,2,1} S_{\infty}^{\prime}(\bar{v_2}) (\bar{v}_1-E_{syn,1}), $$
(19)
$$ C_2 G_{v_1} = -G_{syn,1,2} S_{\infty}^{\prime}(\bar{v_1}) (\bar{v}_2-E_{syn,2}), $$
(20)
$$ C_2 G_{v_2} = -g_{L,2} - G_{syn,1,2} S_{\infty}(\bar{v}_1), \ \ \ \ \ \ \ \ \ $$
(21)

The eigenvalues (r1 and r2) are given by

$$ 2 r_{1,2} = F_{v_1}+G_{v_2} \pm \sqrt{(F_{v_1}-G_{v_2})^2 + 4 F_{v_2} G_{v_1}}. $$
(22)

The first two terms in Eq. (22) are always negative (provided gL,1 > 0 and gL,2 > 0). The second term in the radicand is positive if \(F_{v_{2}}\) and \(G_{v_{1}}\) have the same sign and negative if \(F_{v_{2}}\) and \(G_{v_{1}}\) have different signs. Therefore, the fixed-point for networks with the same type of connections (both excitatory or both inhibitory) can be either stable nodes or saddles, while the fixed-points for excitatory-inhibitory networks can be either stable nodes or stable foci (e.g., Fig. 16).

Fig. 16
figure 16

Two-cell networks of passive cells: phase-plane diagrams for representative parameter values. (a) Mutually inhibitory networks of passive cells. The v1- and v2-nullclines are given by Eqs. (5) and (6), respectively. Black dots indicate stable fixed-points (nodes) and gray dots indicate unstable fixed-points (saddles). Cells and connectivity are identical. The parameter Gin represents Gin,1,2 = Gin,2,1. As Gin increases (from a1 to a3), the v1- and v2-nullclines transition from quasi-linear to nonlinear and the system undergoes a pitchfork bifurcation as a stable fixed-point (a1) looses stability and two additional stable fixed-points are created (a3). Heterogeneous networks have non-symmetric phase-plane diagrams and show a qualitatively similar behavior, but bistability results from saddle-node bifurcations. We used the following parameter values: gL,1 = gL,2 = 0.25, Ein,1 = Ein,2 = − 20, vhlf = 0, vslp = 1. Excitatory-inhibitory networks of passive cells. The v1- and v2-nullclines are given by Eqs. (5) and (6), respectively. Black dots indicate stable nodes and gray dots indicate stable foci. The parameter Gex,1,2 = 0.01 is fixed. As Gin,2,1 increases (from b1 to b3), the fixed-point transitions from stable nodes to stable foci and back to stable nodes. We used the following parameter values: gL,1 = gL,2 = 0.25, Ein,1 = − 20, Eex,2 = 60, vhlf = 0, vslp = 1

1.2 A.2 Absence of limit cycles

We compute

$$ \begin{array}{@{}rcl@{}} U &=& \frac{\partial}{\partial v_1}\left( \frac{dv_1}{dt}\right) + \frac{\partial}{\partial v_2}\left( \frac{dv_2}{dt}\right) \\ &=& - \left( \frac{1}{C_1} [ g_{L,1} + G_{syn,2,1} S_{\infty}(v_2) ] \right.\\ &&\qquad\left.+ \frac{1}{C_2} [ g_{L,2} + G_{syn,1,2} S_{\infty}(v_1) ] \right). \end{array} $$
(23)

Since U < 0 for all v1 and v2 (provided gL,1 > 0 and gL,2 > 0), then by the Bendixson-Dulac theorem (Guckenheimer and Holmes 1983), there are no limit cycles in the (v1,v2)-plane. This argument breaks down when either gL,1 < 0 or gL,2 < 0 and small enough, indicating a strong positive feedback effect generated by an ionic process.

Appendix B: Dynamics of autonomous and forced 2D cells

We consider the following system

$$ C \frac{dv}{dt} = -g_{L} v - g w + A_{in} \sin{(2 \pi f t / 1000)}, $$
(24)
$$ \tau \frac{dw}{dt} = v- w, \hspace{4.8cm} $$
(25)

where the parameters gL, g, C and τ are as in system (1)-(2) by omitting the subindex (k), Ain is the input amplitude, and f is the input frequency. We assume here that all intrinsic parameters (gL, g, C and τ) are positive. The constraint g > 0 indicates that the ionic current that the term gw linearizes is a resonant process (negative feedback) (Richardson et al. 2003; Rotstein and Nadim 2014b). The linearized parameter gL captures the effects of the biophysical leak current and possibly another ionic amplifying process (positive feedback) provided by an additional current. Strong enough amplifying processes may cause gL to be negative.

1.1 B.1 Autonomous 2D cells

The eigenvalues for system (24)-(25) are given by

$$ r_{1,2} = \frac{1}{2 \tau C} \left[ -(g_L \tau + C) \pm \sqrt{(g_L \tau - C)^2 - 4 g \tau C} \right]. $$
(26)

System (1)-(2) (Ain = 0) has a uniquefixed-point (v̄,w̄) = (0, 0). This fixed-point is stable provided gLτ + C > 0. It is a stable node if the radicand in Eq. (26) is non-negative and a stable focus otherwise. We refer the reader for details on the dependence of the fixed-point type (node or focus) with the model parameters to Rotstein and Nadim (2014b).

1.2 B.2 Forced 2D cells: impedance profiles and resonant frequencies

The impedance profile for system (24)-(25) is given by Richardson et al. (2003) and Rotstein and Nadim (2014b)

$$ Z(\omega) = \sqrt{\frac{1+\tau^2 \omega^2}{(g_L + g - \tau C \omega^2)^2 + (g_L \tau + C)^2 \omega^2}}, $$
(27)

where ω = 2πf/1000. The resonant frequency is given by

$$ \omega_{res} = \frac{1}{\tau} \sqrt{-1 + \tau \sqrt{g^2 + 2 g_L g + 2 \frac{g}{\tau}}}, $$
(28)

where for simplicity C = 1. The impedance peak Zmax is given by

$$ \begin{array}{@{}rcl@{}} Z_{max}^2 \!&=&\! Z^2(\omega_{res}) \\ \!&=&\! \left( g_L^2 - \frac{1}{\tau^2} \!- \!2 \frac{g}{\tau} + \frac{2}{\tau} \sqrt{\frac{g (2 + g \tau + 2 g_L \tau)}{\tau}},\right)^{-1}. \\ \end{array} $$
(29)

The resonant properties of 2D linear systems, including their relationship between the intrinsic properties of the unforced cells (e.g, eigenvalues, intrinsic oscillatory frequencies) and the dynamic mechanism of generation of resonance have been investigated extensively by us and other authors (Richardson et al. 2003; Rotstein 2014a, b).

An important aspect to note, relevant for this paper, is that resonance can occur in the absence of damped oscillations; i.e., when the fixed-point is a stable node. In this paper we focus on resonators that do not show damped oscillations.

1.3 B.3 Quasi-displacement of impedance profiles: fixed peak values and changing resonant frequencies

From Eq. (29) we can compute the value of g as a function of Zmax and the other model parameters

$$ g = \frac{(Z^2_{max} + \tau^2 - Z^2_{max} g_L^2 \tau^2)^2}{4 Z^2_{max} \tau (-\tau^2 + Z^2_{max} (1 + g_L \tau)^2)}. $$
(30)

Equation (30) relates the model parameters of a forced 2D linear system of the form (24)-(25) for which the impedance peak Zmax is constant. In order to calculate the balanced values of g and τ, if they exist, for given values of Zmax and gL (fixed) we proceed as follows. First we take values of τ within certain range and compute the corresponding values of g using Eq. (30). For these values of gL, g and τ we compute ωres using (28) and C = 1. In this way we have g = g(τ) and ωres = ωres(τ) for a given value of Zmax.

Appendix C: Self-inhibited 2D cells do not produce sustained (limit cycle) oscillations

We consider system (1)-(2) with vk = vj, Esyn,k = Ein and Gsyn,jk = Gin in Isyn,k (3). For simplicity we omit the subindex.

Our discussion below is based on the values for the synaptic parameters we use in this paper (Ein = − 20, vhlf = 0 and vslp = 1) for which S(v = Ein) ∼ 0. The results we present are valid for a larger range of parameter values provided S(v = Ein) is small enough (the sigmoid function S changes fast enough around vhlf and is negligible at v = Ein).

From our discussion above (Section B), the uncoupled system (Gin = 0) has a stable fixed-point. We expect this to persist for small enough values of Gin.

1.1 C.1 Fixed point

The fixed-points of the self-inhibited 2D system are the zeros of

$$ H(v) = -(g_L+g) v - G_{in} S_{\infty}(v) (v - E_{in}) $$
(31)

whose derivative is given by

$$ H^{\prime}(v) = -(g_L+g) - G_{in} S_{\infty}(v) - G_{in} S^{\prime}_{\infty}(v) (v-E_{in}). $$
(32)

The first two terms in Eq. (32) are negative, while the third one is negative provided v > Ein. However, for v < Ein this third term is negligible. Therefore, H(v) is a decreasing function for all v. Because H(v) < 0 for large enough values of v, a fixed-point exists if H(v) > 0 for some v. The first term in Eq. (31) is positive for negative values of v and so is the second term provided v < Ein. Therefore, the self-inhibited cell has a unique fixed-point (v̄,v̄). Since H(0) = GinS(0)Ein < 0 and H(Ein) = −(gL + g)Ein > 0, then Ein < v̄ < 0.

The stability properties of the fixed-point (v̄,v̄) are determined by looking at the equation for the eigenvalues (26) with gL substituted by gL∗ = gL + GinS′(v̄)(v̄Ein) + GinS(v̄) > gL. Therefore, the stability of the fixed-point is preserved. If (v̄,v̄) is a stable node, then (v̄,v̄) is a node for all values of Gin (Fig. 17a). In contrast, if (v̄,v̄) is a stable focus, then (v̄,v̄) remains a stable focus for small enough values of Gin, but it transitions to a stable node for large enough values of Gin (Fig. 17b).

Fig. 17
figure 17

Self-inhibited resonator: phase-plane diagrams for representative parameter values. The v- and w-nullclines are given by (8) and (9), respectively. Black dots indicate stable nodes and gray dots indicate stable foci. agL = 0.25. The fixed-point for the uncoupled system is a stable node. bgL = 0.01. The fixed-point for the uncoupled system is a stable focus. We used the following parameter values: g = 0.25, τ = 100, Ein = − 20, vhlf = 0, vslp = 1

1.2 C.2 Absence of limit cycles

Because the self-inhibited 2D systems is relatively simple we do not expect the existence of limit cycles. We address this in the region R = {(v,w) ∈ R2 : v > Ein}. We compute

$$ \begin{array}{@{}rcl@{}} U \!&=&\! \frac{\partial}{\partial v}\left( \frac{dv}{dt}\right) + \frac{\partial}{\partial w}\left( \frac{dw}{dt}\right) \\ \!&=&\! -\frac{g_{L}}{C} - \frac{G_{in}}{C} S_{\infty}(v)- \frac{G_{in}}{C} S^{\prime}_{\infty}(v)(v - E_{in}) - \frac{1}{\tau}. \end{array} $$
(33)

By substituting \(S_{\infty }^{\prime }(v)=S_{\infty }(v)(1-S_{\infty }(v)) > 0 \) where S, given by Eq. (4), we obtain

$$ \begin{array}{@{}rcl@{}} U &=& \frac{\partial}{\partial v}\left( \frac{dv}{dt}\right) + \frac{\partial}{\partial w}\left( \frac{dw}{dt}\right) \\ &=& -\frac{1}{C} \left( g_L+\frac{1}{\tau}+G_{in} S_{\infty}(v) \right.\\ &&\qquad\quad\left. + \frac{G_{in}}{v_{slp}} S_{\infty}(v) (1-S_{\infty}(v)) \right). \end{array} $$
(34)

If v > Ein (assuming gL > 0), then U < 0. Thus, by the Bendixson-Dulac theorem (Guckenheimer and Holmes 1983), there are no limit cycles lying entirely in the region R.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel, A., Rotstein, H.G. Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations. J Comput Neurosci 46, 169–195 (2019). https://doi.org/10.1007/s10827-019-00710-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00710-y

Keywords

Navigation