Skip to main content
Log in

Mathematical investigation of IP3-dependent calcium dynamics in astrocytes

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguado, F., Espinosa-Parrilla, J., Carmona, M., & Soriano, E. (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. The Journal of Neuroscience, 22(21), 9430–9444.

    CAS  PubMed  Google Scholar 

  • Agulhon, C., Sun, M., Murphy, T., Myers, T., Lauderdale, K., & Fiacco, T. (2012). Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Frontiers in Pharmacology, 3, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amiri, M., Bahrami, R., & Janahmadi, M. (2012). Functional contributions of astrocytes in synchronization of a neuronal network model. Journal of Theoretical Biology, 292, 60–70.

    Article  PubMed  Google Scholar 

  • Anderson, C., & Swanson, R.A. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 5, 81–94.

    Google Scholar 

  • Bartlett, P., Metzger, W., Gaspers, L., & Thomas, A. (2015). Differential regulation of multiple steps in inositol 1,4,5-trisphosphate signaling by protein kinase c shapes hormone-stimulated ca2+ oscillations. The Journal of Biological Chemistry, 290(30), 18519–18533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T., & Volterra, A. (1998). Prostanglandins stimulate calcium dependent glutamate release from astrocytes. Nature, 391, 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Cao, P., Tan, X., Donovan, G., Sanderson, M., & Sneyd, J. (2014). A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLOS Computational Biology, 10(8), e1003783.

  • Courjaret, R., & Machaca, K. (2014). Mid-range ca2+ signalling mediated by functional coupling between store-operated ca2+ entry and ip3-dependent ca2+ release. Nature Communications, 5(3916). doi:10.1038/ncomms4916.

  • Croft, W., Reusch, K., Tilunaite, A., Russell, N., Thul, R., & Bellamy, T. (2016). Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia, 64(4), 537–552.

    Article  PubMed  Google Scholar 

  • Croisier, H., Tan, X., Perez-Zoghbi, J., Sanderson, M., Sneyd, J., & Brook, B. (2013). Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLOS One, 8(7), e69598.

  • de Lanerolle, N., Lee, T., & Spencer, D.D. (2010). Astrocytes and epilepsy. Neurotherapeutics, 7(4), 424–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pittà, M., & Brunel, N. (2016). Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, 2016.

  • De Pittà, M., Goldberg, M., Volman, V., Berry, H., & Ben-Jacob, E. (2009). Glutamate regulation of calcium and ip3 oscillating and pulsating dynamics in astrocytes. Journal of Biological Physics, 35, 383–411.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Young, G., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in ca2+ concentration. Proceedings of the National Academy of Sciences, 89, 9895–9899.

    Article  CAS  Google Scholar 

  • Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., & Nobile, M. (2007). Calcium signalling in astrocytes and modulation of neural activity. BioSystems, 89(1–3), 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, G. (2014). Modeling the intracellular organization of calcium signaling. WIREs Systems Biology and Medicine, 6, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, G., Falcke, M., Kirk, V., & Sneyd, J. (2016). Models of Calcium Signalling. Springer International Publishing.

  • Falcke, M. (2004). Reading the patterns in living cells-the physics of ca2+ signaling. Advances in Physics, 53, 255–440.

    Article  CAS  Google Scholar 

  • Fujita, T., Chen, M.J., Li, B., Smith, N.A., Peng, W., Sun, W., Toner, M.J., Kress, B.T., Wang, L., Benraiss, A., Takano, T., Wang, S., & Nedergaard, M. (2014). Neuronal transgene expression in dominant-negative snare mice. The Journal of Neuroscience, 34(50), 16594–16604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatto, C., & Milanick, M.A. (1993). Inhibition of the red blood cell calcium pump by eosin and other flurescein analogues. The American Journal of Physiology, 264(6 Pt 1), C1577–C1586.

    CAS  PubMed  Google Scholar 

  • Haydon, P.G. (2001). Glia: listening and talking to the synapse. Nature Reviews, 2, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Haydon, P.G., & Nedergaard, M. (2015). How do astrocytes participate in neural plasticity. Cold Spring Harbor Perspectives in Biology, 7, a020438.

  • Hines, M., Morse, T., Migliore, M., Carnevale, N., & Shepherd, G.M. (2004). Modeldb: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(50), 7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Höfer, T., Venance, L., & Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. The Journal of Neuroscience, 22, 4850–4859.

    PubMed  Google Scholar 

  • Jousset, H., Frieden, M., & Demaurex, N. (2007). Stim1 knockdown reveals that store-operated ca2+ channels located close to sarco/endoplasmic ca2+ atpases (serca) pumps silently refill the endoplasmic reticulum. Journal of Biological Chemistry, 282 (15), 11456–11464.

    Article  CAS  PubMed  Google Scholar 

  • Kantevari, S., Gordon, G., MacVicar, B., & Ellis-Davies, G.C.R. (2011). A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates. Nature Protocols, 6, 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keener, J., & Sneyd, J. (2009). Mathematical physiology. Springer Science + Business Media.

  • Larsen, B.R., Assentoft, M., Cotrina, M.L., Hua, S., Nedergaard, M., Kaila, K., Voipio, J., & MacAulay, N. (2014). Contributions of the na + /k + -atpase, nkcc1, and kir4.1 to hippocampal k + clearance and volume responses. Glia, 62(4), 608–622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavrentovich, M., & Hemkin, S. (2008). A mathematical model of spontaneous calcium(ii) oscillations in astrocytes. Journal of Theoretical Biology, 251, 553–560.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y.-X., & Rinzel, J. (1996). Equations for insp3 receptor-mediated ca2+ oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical Biology, 166, 461–473.

    Article  Google Scholar 

  • Liu, Q., Xum, Q., Kangm, J., & Nedergaard, M. (2004). Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biology, 1(4), 307–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Tang, F., & Chen, J. (2010). Designing dynamical output feedback controllers for store-operated ca2+ entry. Mathematical BioSciences, 228, 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Malarkey, E., Ni, Y., & Parpura, V. (2008). Ca2+ entry through trpc1 channels contributes to intracellular ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia, 56, 821–835.

    Article  PubMed  Google Scholar 

  • McKay, M., Beckman, R., & Conover, W. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code technometrics. Glia, 21(2), 239–245.

    Google Scholar 

  • Nedergaard, M., & Verkhratsky, A. (2012). Artifact versus reality–how astrocytes contribute to synaptic events. Glia, 60, 1013–1023.

  • Nedergaard, M., Ransom, B.R., & Goldman, S.A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neuroscience, 26, 523–530.

    Article  CAS  Google Scholar 

  • Nezu, A., Tanimura, A., Morita, T., & Tojyo, Y. (2010). Use of fluorescence resonance energy visualization of ins(1,4,5)p3 dynamics in living cells: two distinct pathways for ins(1,4,5)p3 generation following mechanical stimulation of hsy-ea1 cells. Journal of Cell Science, 123, 2292–2298.

    Article  CAS  PubMed  Google Scholar 

  • Pasti, L., Pozzan, T., & Carmignoto, G. (1995). Long-lasting changes of calcium oscillations in astrocytes. a new form of glutamate-mediated plasticity. Journal of Cell Science, 270(25), 15203–15210.

    CAS  Google Scholar 

  • Plenge-Tellechea, F., Soler, F., & Fernandez-Belda, F. (1997). On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum ca21-atpases by cyclopiazonic acid. Journal of Biological Chemistry, 272(5), 2794–2800.

    Article  CAS  PubMed  Google Scholar 

  • Reato, D., Cammarota, M., Parra, L., & Carmignoto, G. (2012). Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers in Computational Neuroscience, 6(81). doi:10.3389/fncom.2012.00081.

  • Ridet, J., Malhotra, S.K., Privat, A., & Gage, F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends in Neuroscience, 20(12), 570–577.

    Article  CAS  Google Scholar 

  • Roos, J., DiGregorio, P., Yeromin, A., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J., Wagner, S., Cahalan, M., Veliçelebi, G., & Stauderman, K. (2005). Stim1, an essential and conserved component of store-operated ca2+ channel function. Journal of Cell Biology, 169(3), 435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi, E., Tong, X., Kwan, K., Corey, D., & Khakh, B. (2012). Trpa1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through gat-3. Nature Neuroscience, 15(1), 70–80.

  • Singh, P., Mhaka, A.M., Christensen, S.B., Gray, J.J., Denmeade, S.R., & Isaacs, J.T. (2005). Applying linear interaction energy method for rational design of noncompetitive allosteric inhibitors of the sarco- and endoplasmic reticulum calcium-atpase. Journal of Medicinal Chemistry, 48, 3005–3014.

    Article  CAS  PubMed  Google Scholar 

  • Sneyd, J., Tsaneva-Atanasova, K., Yule, D., Thompson, J., & Shuttleworth, T. (2004). Control of calcium oscillations by membrane fluxes. PNAS, 101(5), 1392–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneyd, J., Tsaneva-Atanasova, K., Reznikov, V., Bai, Y., Sanderson, M., & Yule, D.I. (2006). A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. PNAS, 103(6), 1675–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, D., Vargas, J., & Wilcox, K. (2010). Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiology of Disease, 40, 573–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura, A., Morita, A., Nezu, A., Shitara, A., Hashimoto, N., & Tojyo, Y. (2009). Use of fluorescence resonance energy transfer-based biosensors for the quantitative analysis of inositol 1,4,5-trisphosphate dynamics in calcium oscillations. Journal of Biological Chemistry, 284(13), 8910–8917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivari, E., Manninen, T., Nahata, A., Jalonen, T., & Linne, M. (2011). Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2am measurements and stochastic model simulations. PLOS One, 6(3), e17914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tower, D., & Young, O.M. (1973). The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. Journal of Neurochemistry, 20, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, G., Jung, P., & Cornell-Bell, A.H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky, A., Rodríguez, J., & Parpura, V. (2012a). Calcium signalling in astroglia. Molecular and Cellular Endocrinology, 353, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky, A., Sofroniew, M.V., Messing, A., deLanerolle, N.C., Rempe, D., Rodríguez, J.J., & Nedergaard, M. (2012b). Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro, 4(3), e00082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade, J., McDaid, L., Harkin, J., Crunelli, V., & Scott Kelso, J. (2011). Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLOS One, 6(12), e29445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallraf, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K., & Steinhauser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. The Journal of Neuroscience, 26, 5438–5447.

    Article  Google Scholar 

  • Wang, F., Smith, N.A., Xu, Q., Fujita, T., Baba, A., Matsuda, T., Takano, T., Bekar, L., & Nedergaard, M. (2012). Astrocytes modulate neural network activity by ca2+ - dependent uptake. Science Signaling, 5(218), ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Smith, N.A., Xu, Q., Goldman, S., Peng, W., Huang, J.H., Takano, T., & Nedergaard, M. (2013). Photolysis of caged ca2+ but not receptor-mediated ca2+ signaling triggers astrocytic glutamate release. The Journal of Neuroscience, 33(44), 17404–17412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., & Danbolt, N.C. (2013). Gaba and glutamate transporters in brain. Frontiers in Endocrinology, 4(165). doi:10.3389/fendo.2013.00165.

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMS-1022945 to A. Borisyuk; DMS-1148230, to A. Borisyuk and G. Handy) and the National Institutes of Health (R01 NS078331, to J.A. White and K.S. Wilcox).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Borisyuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Action Editor: David Terman

G. Handy and M. Taheri are co-first authors.

Appendix

Appendix

1.1 Mathematical Model

The differential equations driving the model are

$$\begin{array}{@{}rcl@{}} \frac{d c}{d t} &=& J_{\text{IP3R}}(c,c_{ER},p)+J_{\text{ER\_leak}}(c,c_{ER})-J_{\text{SERCA}}(c) \\ &&+\delta[J_{\text{ECS\_add}}(c)-J_{\text{PMCA}}(c) +J_{\text{{SOC}}}(c_{ER})], \end{array} $$
(1)
$$\begin{array}{@{}rcl@{}} \frac{dc_{\text{tot}}}{d t} &=& \delta[J_{\text{ECS\_add}}(c)-J_{\text{PMCA}}(c) +J_{\text{{SOC}}}(c_{ER})], \end{array} $$
(2)
$$\begin{array}{@{}rcl@{}} \frac{d h}{d t} &=& \frac{h_{\infty}(c,p) - h}{\tau_{h}(c,p)}, \end{array} $$
(3)

where we denote the calcium concentration in the ER as c E R = (c totc)γ, and IP3 concentration as p. The J i ’s are the fluxes found in Fig. 1. Specifically, we use the Li-Rinzel IP3 receptor model to capture the calcium dynamics through the IP3R channel (Li and Rinzel 1996), which is governed by the following equations

$$\begin{array}{@{}rcl@{}} J_{\text{IP3R}}(c,c_{ER},p) &=& v_{\text{IP3R}} m_{\infty}(p)^{3} n_{\infty}(c)^{3} h(c,p)^{3} (c_{ER} - c), \\ \frac{d h}{d t} &=& \frac{h_{\infty}(c,p) - h}{\tau_{h}(c,p)}, \end{array} $$

where

$$m_{\infty}(p) = \frac{p}{p + d_{1}},\;\;\; n_{\infty}(c) = \frac{c}{c + d_{5}}, $$

and

$$\begin{array}{@{}rcl@{}} \tau_{h}(p,c) &=&\frac{1}{a_{2}(Q_{2}(p)+c)}, \;\; h_{\infty}(p,c)= \frac{Q_{2}(p)}{Q_{2}(p)+c}, \\ Q_{2}(p) &=& d_{2} \left( \frac{p + d_{1}}{p+d_{3}}\right). \end{array} $$

The SERCA and PMCA pumps are both model as Hill functions, the forms found in Cao et al. (2014) and Croisier et al. (2013) respectively, and are given by the equations,

$$J_{\text{SERCA}}(c) = v_{\text{SERCA}}\frac{c^{1.75}}{c^{1.75} + k_{\text{SERCA}}^{1.75}}, $$

and

$$J_{\text{PMCA}}(c) = v_{\text{PMCA}}\frac{c^{2}}{c^{2} + k_{\text{PMCA}}^{2}}. $$

Similar to the work in Cao et al. (2014), we model SOC channels as the following reverse Hill function

$$J_{\text{SOC}}(c_{ER}) = v_{\text{SOC}}\frac{k_{\text{SOC}}^{2}}{k_{\text{SOC}}^{2}+c_{ER}^{2}}, $$

since it has been shown that they open when calcium is depleted in the ER (Verkhratsky et al. 2012b). The model also includes an IP3R-independent leak between the cytosol and the ER with the following equation

$$J_{\text{ER\_leak}}(c,c_{ER}) = v_{\text{ER\_leak}}(c_{ER}-c). $$

Further, we account for additional fluxes across the plasma membrane with the equation

$$J_{\text{ECS\_add}}(c) = v_{\text{in}} - k_{\text{out}}c, $$

where v in captures the constant leak from the extracellular space, and −k out c accounts for additional calcium extrusion not explicitly model, such as the sodium-calcium exchanger (Höfer et al. 2002; Ullah et al. 2006; Keener and Sneyd 2009; Verkhratsky et al. 2012a). Lastly, the explicit equation for IP3 is

$$\begin{array}{@{}rcl@{}} p(t) = \left\{\begin{array}{ll} 0 & t < t^{*}\\ s_{\infty}\cdot(1-e^{-r_{\text{rise}}(t-t^{*})}) & t^{*}\le t < t^{*}+d_{\text{rise}} \\ A\cdot e^{-r_{\text{dec}}\cdot(t-[t^{*}+d_{\text{rise}}])} & t^{*}+d_{\text{rise}} \le t \end{array}\right., \end{array} $$
(4)

where

$$s_{\infty}= \frac{A}{1-e^{-r_{\text{rise}}\cdot d_{\text{rise}}}},\;\; r_{\text{dec}}=-\frac{1}{d_{\text{decay}}}\log\left( \frac{0.005}{A}\right), $$

t is the time of stimulus, A is the max amplitude, r rise and r dec are the rate of rise and decay respectively, and d rise and d decay are the duration of the rising and decaying phase. These parameters allow us the flexibility to explore a large distribution of IP3 responses easily and effectively.

The complete range of IP3 parameters, as well as the other parameters mentioned in this section, are included in Table 1. Specific values used in the figures are included in the figure captions and text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handy, G., Taheri, M., White, J.A. et al. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes. J Comput Neurosci 42, 257–273 (2017). https://doi.org/10.1007/s10827-017-0640-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0640-1

Keywords

Navigation