Skip to main content
Log in

Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N = 7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73 %) CA3→CA1 models and 96/145 (66 %) CA1→CA3 models had significant predictive power, thus confirming a predictive ’Granger’ causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3’s role as an endogenous hippocampal pacemaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed, O.J., & Mehta, M.R. (2009). The hippocampal rate code: anatomy, physiology and theory. Trends in neurosciences, 32 (6), 329–338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avoli, M., DAntuono, M., Louvel, J., Köhling, R., Biagini, G., Pumain, R., DArcangelo, G., Tancredi, V. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Progress in Neurobiology, 68 (3), 167–207.

    Article  CAS  PubMed  Google Scholar 

  • Axmacher, N., Mormann, F., Fernández, G., Elger, C.E., Fell, J. (2006). Memory formation by neuronal synchronization. Brain Research Reviews, 52 (1), 170–182.

    Article  PubMed  Google Scholar 

  • Barbarosie, M., & Avoli, M. (1997). Ca3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. The Journal of Neuroscience, 17 (23), 9308–9314.

    CAS  PubMed  Google Scholar 

  • Berger, T.W., Ahuja, A., Courellis, S.H., Deadwyler, S.A., Erinjippurath, G., Gerhardt, G.A., Gholmieh, G., Granacki, J.J., Hampson, R., Hsaio, M.C., et al. (2005). Restoring lost cognitive function. Engineering in Medicine and Biology Magazine, IEEE, 24 (5), 30–44.

    Article  Google Scholar 

  • Berger, T.W., Song, D., Chan, R.HM., Marmarelis, V.Z., LaCoss, J., Wills, J., Hampson, R.E., Deadwyler, S.A., Granacki, J.J. (2012). A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and vlsi implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20 (2), 198–211.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berry, S.D., & Thompson, R.F. (1978). Prediction of learning rate from the hippocampal electroencephalogram. Science, 200 (4347), 1298–1300.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, E.H. (2013). Neuronal circuits in epilepsy: do they matter? Experimental Neurology, 244, 67–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bibbig, A., Middleton, S., Racca, C., Gillies, M.J., Garner, H., LeBeau, F.E.N., Davies, C.H., Whittington, M.A. (2007). Beta rhythms (15–20 hz) generated by nonreciprocal communication in hippocampus. Journal of Neurophysiology, 97 (4), 2812–2823.

    Article  PubMed  Google Scholar 

  • Boido, D., Jesuthasan, N., Uva, L., de Curtis, M. (2014). Network dynamics during the progression of seizure-like events in the hippocampal–parahippocampal regions. Cerebral Cortex, 24 (1), 163–173.

    Article  PubMed  Google Scholar 

  • Bragin, A., Csicsvari, J., Penttonen, M., Buzsaki, G. (1997). Epileptic afterdischarge in the hippocampal–entorhinal system: current source density and unit studies. Neuroscience, 76 (4), 1187–1203.

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for noisy brain states. Neuroscience, 31 (3), 551–570.

    Article  PubMed  Google Scholar 

  • Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33 (3), 325–340.

    Article  PubMed  Google Scholar 

  • Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chrobak, J.J., Stackman, R.W., Walsh, T.J. (1989). Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat. Behavioral and Neural Biology, 52 (3), 357–369.

    Article  CAS  PubMed  Google Scholar 

  • Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.-B., Moser, E.I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462 (7271), 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Colom, L.V. (2006). Septal networks: relevance to theta rhythm, epilepsy and alzheimer’s disease. Journal of Neurochemistry, 96 (3), 609–623.

    Article  CAS  PubMed  Google Scholar 

  • Craig, S., & Commins, S. (2005). Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area ca1 to the entorhinal cortex. Neuroscience Research, 53 (2), 140–146.

    Article  PubMed  Google Scholar 

  • Csicsvari, J., Jamieson, B., Wise, K.D., Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37 (2), 311–322.

    Article  CAS  PubMed  Google Scholar 

  • Deadwyler, S.A., West, J.R., Cotman, C.W., Lynch, G. (1975). Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortex. Experimental Neurology, 49 (1), 35–57.

    Article  CAS  PubMed  Google Scholar 

  • Doose, H., & Baier, W.K. (1988). Theta rhythms in the eeg: a genetic trait in childhood epilepsy. Brain and Development, 10 (6), 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Finch, D.M., Wong, E.E., Derian, E.L., Babb, T.L. (1986). Neurophysiology of limbic system pathways in the rat: projections from the subicular complex and hippocampus to the entorhinal cortex. Brain Research, 397 (2), 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Fuster, J.M. (2000). Cortical dynamics of memory. International Journal of Psychophysiology, 35 (2), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Gloveli, T., Schmitz, D., Empson, R.M., Heinemann, U. (1997). Frequency-dependent information flow from the entorhinal cortex to the hippocampus. Journal of Neurophysiology, 78 (6), 3444–3449.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Sulser, A., Wang, J., Motamedi, G.K., Avoli, M., Vicini, S., Dzakpasu, R. (2011). The 4-aminopyridine in vitro epilepsy model analyzed with a perforated multi-electrode array. Neuropharmacology, 60 (7), 1142–1153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goonawardena, A.V., Robinson, L., Hampson, R.E., Riedel, G. (2010). Cannabinoid and cholinergic systems interact during performance of a short-term memory task in the rat. Learning & Memory, 17 (10), 502–511.

    Article  CAS  Google Scholar 

  • Goutagny, R., Jackson, J., Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature Neuroscience, 12(12).

  • Hampson, R.E., Simeral, J.D., Deadwyler, S.A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402 (6762), 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Hampson, R.E., Gerhardt, G.A., Marmarelis, V., Song, D., Opris, I., Santos, L., Berger, T.W., Deadwyler, S.A. (2012a). Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing., (p. 056012): 9.

  • Hampson, R.E., Song, D., Chan, R.HM., Sweatt, A.J., Riley, M.R., Goonawardena, A.V., Marmarelis, V.Z., Gerhardt, G.A., Berger, T.W., Deadwyler, S.A. (2012b). Closing the loop for memory prosthesis: Detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20 (4), 510–525.

    Article  Google Scholar 

  • Hanley, J.A., & McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23 (5), 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R.S.G. (1993). Entorhinal-hippocampal connections: a speculative view of their function. Trends in Neurosciences, 16 (2), 58–64.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Putrino, D., Ghosh, S., Brown, E.N. (2011). A granger causality measure for point process models of ensemble neural spiking activity. PLoS computational biology, 7 (3), e1001110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloosterman, F., Haeften, van T., Lopes da Silva, F.H. (2004). Two reentrant pathways in the hippocampal-entorhinal system. Hippocampus, 14 (8), 1026–1039.

    Article  PubMed  Google Scholar 

  • Kocsis, B., Bragin, A., Buzsáki, G. (1999). Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. The Journal of Neuroscience, 19 (14), 6200–6212.

    CAS  PubMed  Google Scholar 

  • Leung, L.S., & Yu, H.-W. (1998). Theta-frequency resonance in hippocampal ca1 neurons in vitro demonstrated by sinusoidal current injection. Journal of Neurophysiology, 79 (3), 1592–1596.

    CAS  PubMed  Google Scholar 

  • Li, X.-G., Somogyi, P., Ylinen, A., Buzsaki, G. (1994). The hippocampal ca3 network: an in vivo intracellular labeling study. Journal of Comparative Neurology, 339 (2), 181–208.

    Article  CAS  PubMed  Google Scholar 

  • Lu, U., Song, D., Berger, T.W. (2011). Nonlinear dynamic modeling of synaptically driven single hippocampal neuron intracellular activity. IEEE Transactions on Biomedical Engineering, 58 (5), 1303–1313.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mann, E.O., & Paulsen, Ole (2005). Mechanisms underlying gamma (40 hz) network oscillations in the hippocampusa mini-review. Progress in Biophysics and Molecular Biology, 87 (1), 67–76.

    Article  PubMed  Google Scholar 

  • Marmarelis, V.Z. (2004). Nonlinear dynamic modeling of physiological systems. New York: Interscience.

    Book  Google Scholar 

  • Marmarelis, V.Z., Shin, D.C., Song, D., Hampson, R.E., Deadwyler, S.A., Berger, T.W. (2013). Nonlinear modeling of dynamic interactions within neuronal ensembles using principal dynamic modes. Journal of Computational Neuroscience, 34 (1), 73–87.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marmarelis, V.Z., Shin, D.C., Song, D., Hampson, R.E., Deadwyler, S.A., Berger, T.W. (2014). On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes. Journal of Computational Neuroscience, 36 (3), 321–337.

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis, V.Z., & Orme, M.E. (1993). Modeling of neural systems by use of neuronal modes. IEEE Transactions on Biomedical Engineering, 40 (11), 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis, V.Z., Shin, D.C., Hampson, R.E., Deadwyler, S.A., Song, D., Berger, T.W. (2012). Design of optimal stimulation patterns for neuronal ensembles based on volterra-type hierarchical modeling. Journal of Neural Engineering, 9 (6), 066003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medvedev, A.V. (2001). Temporal binding at gamma frequencies in the brain: paving the way to epilepsy? Australasian Physics & Engineering Sciences in Medicine, 24 (1), 37–48.

    Article  CAS  Google Scholar 

  • Mizuseki, K., Sirota, A., Pastalkova, E., Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron, 64 (2), 267–280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagao, T., Alonso, A., Avoli, M. (1996). Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation. Neuroscience, 72 (2), 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Naylor, D. (2002). Changes in nonlinear signal processing in rat hippocampus associated with loss of paired-pulse inhibition or epileptogenesis. Epilepsia, 43 (s5), 188–193.

    Article  PubMed  Google Scholar 

  • Pacia, S.V., & Ebersole, J.S. (1997). Intracranial eeg substrates of scalp ictal patterns from temporal lobe foci. Epilepsia, 38 (6), 642–654.

    Article  CAS  PubMed  Google Scholar 

  • Pare, D., Llinas, R., et al. (1992). Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra-and intracellular study in the isolated guinea pig brain in vitro. The Journal of neuroscience, 12 (5), 1867–1881.

    CAS  PubMed  Google Scholar 

  • Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., Paulsen, Ole (2000). Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. The Journal of Physiology, 529 (1), 205–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandler, R., Shin, D.C., Song, D., Hampson, R.E., Deadwyler, S.A., Berger, T.W., Marmarelis, V.Z. (2013). Closed-loop modeling of the hippocampus and design of neurostimulation patterns for suppressing seizures. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 1143–1146). IEEE.

  • Sandler, R., Song, D., Hampson, R.E., Deadwyler, S.A., Berger, T., Marmarelis, V. (2014). Probability-based nonlinear modeling of neural dynamical systems with point-process inputs and outputs. BMC Neuroscience, 15 (Suppl 1), P102.

    Article  PubMed Central  Google Scholar 

  • Scharfman, H.E. (2007). The ca3 backprojection to the dentate gyrus. Progress in Brain Research, 163, 627–637.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sik, A., Ylinen, A., Penttonen, M., Buzsaki, G. (1994). Inhibitory ca1-ca3-hilar region feedback in the hippocampus. Science, 265 (5179), 1722–1724.

    Article  CAS  PubMed  Google Scholar 

  • Song, D., Chan, R.HM, Marmarelis, V.Z, Hampson, R.E., Deadwyler, S.A., Berger, T.W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54 (6), 1053–1066.

    Article  PubMed  Google Scholar 

  • Song, D., Chan, R.HM., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., Berger, T.W. (2009a). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22 (9), 1340–1351.

    Article  Google Scholar 

  • Song, D., Marmarelis, V.Z., Berger, T.W. (2009b). Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. Journal of Computational Neuroscience, 26 (1), 1–19.

    Article  Google Scholar 

  • Song, D., Wang, Z., Marmarelis, V.Z., Berger, T.W. (2009c). Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: experimental study. Journal of Computational Neuroscience, 26 (1), 21–37.

    Article  Google Scholar 

  • Spruston, N., & McBain, C. (2007). Structural and functional properties of hippocampal neurons. Oxford: Oxford University Press, Inc.

  • Staubli, U., & Xu, F.B. (1995). Effects of 5-ht3 receptor antagonism on hippocampal theta rhythm, memory, and ltp induction in the freely moving rat. The Journal of Neuroscience, 15 (3), 2445–2452.

    CAS  PubMed  Google Scholar 

  • Stringer, J.L., & Lothman, E.W. (1992). Reverberatory seizure discharges in hippocampal-parahippocampal circuits. Experimental Neurology, 116 (2), 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki, N., & Nojyo, Y. (1995). Preservation of topography in the connections between the subiculum, field ca1, and the entorhinal cortex in rats. Journal of Comparative Neurology, 353 (3), 379–390.

    Article  CAS  PubMed  Google Scholar 

  • van Rossum, M.C.W. (2001). A novel spike distance. Neural Computation, 13 (4), 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Victor, J.D., & Purpura, K.P. (1997). Metric-space analysis of spike trains: theory, algorithms and application. Network: Computation in Neural Systems, 8 (2), 127–164.

    Article  Google Scholar 

  • Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24 (8), 455–463.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. European Journal of Neuroscience, 15 (9), 1499–1508.

    Article  CAS  PubMed  Google Scholar 

  • Wendling, F. (2008). Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation. Expert Review of Neurotherapeutics, 8(6), 889–896. doi:10.1586/14737175.8.6.889.

    Article  PubMed Central  PubMed  Google Scholar 

  • West,M.J., Slomianka, L. H. J. G., Gundersen, H. Jẋ. G. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231(4), 482–497.

    Article  CAS  PubMed  Google Scholar 

  • Wiebe, S.P., & Stäubli, U.V. (2001). Recognition memory correlates of hippocampal theta cells. The Journal of Neuroscience, 21 (11), 3955–3967.

    CAS  PubMed  Google Scholar 

  • Winson, J. (1978). Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science, 201 (4351), 160–163.

    Article  CAS  PubMed  Google Scholar 

  • Wu, K., Canning, K.J., Leung, L.S. (1998). Functional interconnections between ca3 and the dentate gyrus revealed by current source density analysis. Hippocampus, 8 (3), 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Zanos, T.P., Courellis, S.H., Berger, T.W., Hampson, R.E., Deadwyler, S.A., Marmarelis, V.Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16 (4), 336–352.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant P41-EB001978 to the Biomedical Simulations Resource at the University of Southern California and DARPA contract N66601-09-C-2081.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Sandler.

Additional information

Action Editor: Alessandro Treves

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PNG 4.10 KB)

(PNG 13.4 KB)

(PNG 21.3 KB)

(PNG 13.1 KB)

(PNG 104 KB)

(BIB 111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandler, R.A., Song, D., Hampson, R.E. et al. Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus. J Comput Neurosci 38, 89–103 (2015). https://doi.org/10.1007/s10827-014-0530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0530-8

Keywords

Navigation