Skip to main content

Advertisement

Log in

Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, we employed several different methods to infer synaptic connections from simulated spike data from a realistic local cortical network model. This approach allowed us to directly compare the accuracy of different methods in predicting synaptic connectivity. We compared the performance of model-free (coherence measure and transfer entropy) and model-based (coupled escape rate model) methods of connectivity inference, applying those methods to the simulated spike data from the model networks with different network topologies. Our results indicate that the accuracy of the inferred connectivity was higher for highly clustered, near regular, or small-world networks, while accuracy was lower for random networks, irrespective of which analysis method was employed. Among the employed methods, the model-based method performed best. This model performed with higher accuracy, was less sensitive to threshold changes, and required less data to make an accurate assessment of connectivity. Given that cortical connectivity tends to be highly clustered, our results outline a powerful analytical tool for inferring local synaptic connectivity from observations of spontaneous activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16, 412–424.

    Article  PubMed  CAS  Google Scholar 

  • Becchetti, A., Gullo, F., Bruno, G., Dossi, E., Lecchi, M., & Wanke, E. (2012). Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays. Frontiers in Neural Circuits, 6, 63.

    Article  PubMed  Google Scholar 

  • Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.

    PubMed  CAS  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.

    Article  PubMed  Google Scholar 

  • Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal coupling between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences of the United States of America, 106, 14058–14062.

    Article  PubMed  CAS  Google Scholar 

  • Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge, MA: MIT.

    Google Scholar 

  • Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K + channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 82, 2476–2489.

    PubMed  CAS  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

    Article  Google Scholar 

  • Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., et al. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467, 673–677.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect, 1, 13–36.

    Article  PubMed  Google Scholar 

  • Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PloS One, 4, e6482.

    Article  PubMed  Google Scholar 

  • Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recording: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 4.

    Article  PubMed  Google Scholar 

  • Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gourevitch, B., & Eggermont, J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97, 2533–2543.

    Article  PubMed  Google Scholar 

  • Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., et al. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. Science, 304, 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PloS One, 6, e27431.

    Article  PubMed  CAS  Google Scholar 

  • Jolivet, R., Rauch, A., Lüscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.

    Article  PubMed  Google Scholar 

  • Kitano, K., & Fukai, T. (2007). Variability v.s. synchronicity of neural activity local cortical network models with different wiring topologies. Journal of Computational Neuroscience, 23, 237–250.

    Article  PubMed  Google Scholar 

  • Kobayashi, R., & Shinomoto, S. (2007). State space method for predicting the spike times of a neuron. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 75, 011925.

    Article  PubMed  Google Scholar 

  • Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuroscience, 3, 9.

    Article  PubMed  Google Scholar 

  • Kulkarni, J. E., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network, 18, 375–407.

    Article  PubMed  Google Scholar 

  • Kummer, M., Kirmse, K., Witte, O. W., & Holthoff, K. (2012). Reliable in vivo identification of both GABAergic and glutamatergic neurons using Emx1-Cre driven fluorescent reporter expression. Cell Calcium, 52, 182–189.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C. C. H., & Gerstner, W. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 107, 1756–1775.

    Article  PubMed  Google Scholar 

  • Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47–79.

    Article  PubMed  Google Scholar 

  • Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.

    Article  PubMed  CAS  Google Scholar 

  • Neymotin, S. A., Jacobs, K. M., Fenton, A. A., & Lytton, W. W. (2011). Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 30, 69–84.

    Article  PubMed  Google Scholar 

  • Ohiorhenuan, I. E., & Victor, J. D. (2011). Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. Journal of Computational Neuroscience, 30, 125–141.

    Article  PubMed  Google Scholar 

  • Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.

    Article  PubMed  Google Scholar 

  • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15, 243–262.

    Article  PubMed  Google Scholar 

  • Perin, R., Berger, T. K., & Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences USA, 108, 5419–5424.

    Article  CAS  Google Scholar 

  • Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neural spike trains and stochastic point processes II. Simultaneous spike trains. Biophysical Journal, 7, 419–440.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, C. C. H. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neurophysiology, 87, 2904–2914.

    PubMed  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Platkiewicz, J., & Brette, R. (2010). A threshold equation for action potential initiation. PLoS Computational Biology, 6, 1000850.

    Article  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Shinomoto, S. (2010). Fitting a stochastic spiking model to neuronal current injection data. Neural Networks, 23, 764–769.

    Article  PubMed  Google Scholar 

  • Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.

    Article  PubMed  Google Scholar 

  • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.

    Article  PubMed  Google Scholar 

  • Stetter, O., Battaglia, D., Soriano, J., & Geisel, T. (2012). Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology, 8, e1002653.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., & Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in spontaneously active networks. Proceedings of the National Academy of Sciences of the United States of America, 107, 10244–10249.

    Article  PubMed  CAS  Google Scholar 

  • Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.

    Article  PubMed  Google Scholar 

  • Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 710–723.

    Article  Google Scholar 

  • Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with frequency-depedent synapses. Journal of Neuroscience, 20, RC50.

    PubMed  CAS  Google Scholar 

  • Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuron network model. Journal of Neuroscience, 16, 6402–6413.

    PubMed  CAS  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, S., Kim, H., & Shinomoto, S. (2011). Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times. Frontiers in Computational Neuroscience, 5, 42.

    Article  PubMed  Google Scholar 

  • Yger, P., Boustani, S. E., Destexhe, A., & Frégnac, Y. (2011). Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. Journal of Computational Neuroscience, 31, 229–245.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study is partially supported by Support Center for Advanced Telecommunications Technology Research (RK) and by JSPS KAKENHI Grant Number 21700334 (KK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsunori Kitano.

Additional information

Action Editor: A. Compte

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Raster displays during an episodic burst and dependence of firing rates and Cvs on locations. ( A ) Raster plots during an episodic burst for the various network topologies. Spatial distributions of the averaged firing rates ( B ) and Cvs ( C ). The unit of color scale in ( B ) is spike/s. (JPEG 584 kb)

High resolution image (EPS 10574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, R., Kitano, K. Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model. J Comput Neurosci 35, 109–124 (2013). https://doi.org/10.1007/s10827-013-0443-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0443-y

Keywords

Navigation