Skip to main content
Log in

Neural adaptation facilitates oscillatory responses to static inputs in a recurrent network of ON and OFF cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We investigate the role of adaptation in a neural field model, composed of ON and OFF cells, with delayed all-to-all recurrent connections. As external spatially profiled inputs drive the network, ON cells receive inputs directly, while OFF cells receive an inverted image of the original signals. Via global and delayed inhibitory connections, these signals can cause the system to enter states of sustained oscillatory activity. We perform a bifurcation analysis of our model to elucidate how neural adaptation influences the ability of the network to exhibit oscillatory activity. We show that slow adaptation encourages input-induced rhythmic states by decreasing the Andronov–Hopf bifurcation threshold. We further determine how the feedback and adaptation together shape the resonant properties of the ON and OFF cell network and how this affects the response to time-periodic input. By introducing an additional frequency in the system, adaptation alters the resonance frequency by shifting the peaks where the response is maximal. We support these results with numerical experiments of the neural field model. Although developed in the context of the circuitry of the electric sense, these results are applicable to any network of spontaneously firing cells with global inhibitory feedback to themselves, in which a fraction of these cells receive external input directly, while the remaining ones receive an inverted version of this input via feedforward di-synaptic inhibition. Thus the results are relevant beyond the many sensory systems where ON and OFF cells are usually identified, and provide the backbone for understanding dynamical network effects of lateral connections and various forms of ON/OFF responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bastian, J., Chacron, M. J., & Maler, L. (2002). Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. Journal of Neuroscience, 22, 4577–4590.

    PubMed  CAS  Google Scholar 

  • Benda, J., Bethge, M., Hennig, M., Pawelzik, K., & Herz, A. V. M. (2001). Spike-frequency adaptation: Phenomenological model and experimental tests. Neurocomputing, 38–40, 105–110.

    Article  Google Scholar 

  • Benda, J., & Herz, A. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523–2564.

    Article  PubMed  Google Scholar 

  • Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. The Journal of Neuroscience, 25, 2312–2321.

    Article  PubMed  CAS  Google Scholar 

  • Benda, J., Longtin, A., & Maler, L. (2006). A synchronization-desynchronization code for natural communication signals. Neuron, 52, 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in integrate-and-fire models with adaptation currents or dynamic thresholds. Journal of Neurophysiology. In press.

  • Berman, N. J., & Maler, L. (1998). Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: Implications for sensory filtering. Journal of Neurophysiology, 80, 3214–3232.

    PubMed  CAS  Google Scholar 

  • Berman, N. J., & Maler, L. (1999). Neural architecture of the electrosensory lateral line lobe: Adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. Journal of Experimental Biology, 202, 1243.

    PubMed  Google Scholar 

  • Blomquist, P., Wyller, J., & Einevoll, G. T. (2005). Localized activity patterns in two-population neuronal networks. Physica D, 206, 180.

    Article  Google Scholar 

  • Borgers, C., Epstein, S., & Kopell, N. J. (2008). Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceedings of the National Academy of Sciences of the United States of America, 105, 18023.

    Article  PubMed  CAS  Google Scholar 

  • Borgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15, 509–538.

    Article  PubMed  Google Scholar 

  • Brandt, S. F., & Wessel, R. (2007). Winner-take-all selection in a neural system with delayed feedback. Biological Cybernetics, 97, 221–228.

    Article  PubMed  Google Scholar 

  • Chacron, M., et al. (2005). Delayed excitatory and inhibitory feedback shape neural information transmission. Physics Review E, 72, 051917.

    Article  Google Scholar 

  • Chacron, M., Longtin, A., & Maler, L. (2005). Feedback and feedforward control of frequency tuning to naturalistic stimuli. Journal of Neuroscience, 25, 5521–5532.

    Article  PubMed  CAS  Google Scholar 

  • Crook, S., Ermentrout, G. B., & Bower, J. M. (1998). Spike-frequency adaptation affects the synchronization properties of cortical oscillatiors. Neural Computation, 10, 837–854.

    Article  PubMed  CAS  Google Scholar 

  • Curtu, R., & Ermentrout, B. (2004). Pattern formation in a network of excitatory and inhibitory cells with adaptation. SIAM Journal of Applied Dynamical Systems, 3, 191–231.

    Article  Google Scholar 

  • Dhamala, M., Jirsa, V. K., & Ding, M. D. (2004). Enhancement of neural synchrony by time delay. Physical Review Letters, 92, 074104.

    Article  PubMed  Google Scholar 

  • Doiron, B., Chacron, M. J., Maler, L., Longtin, A., & Bastian, J. (2003). Inhibitory feedback required for network oscillatory response to communication but not prey stimuli. Nature, 421, 539.

    Article  PubMed  CAS  Google Scholar 

  • Doiron, B., Lindner, B., Longtin, A., Bastian, J., & Maler, L. (2004). Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Physical Review Letters, 93, 4.

    Article  Google Scholar 

  • Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.

    Article  PubMed  CAS  Google Scholar 

  • Folias, S. E., & Bressloff, P. (2005). Breathers in two-dimensional neural media. Physical Review Letters, 95, 208107.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, F. (1996). Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Network Computing in Neural System, 7, 61–85.

    Article  Google Scholar 

  • Gabbiani, F., & Krapp, H. G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96, 2951–2962.

    Article  PubMed  Google Scholar 

  • Gollisch, T., & Herz, A. V. M. (2004). Input-driven components of spike-frequency adaptation can be unmasked in vivo. Journal of Neuroscience, 24, 7435–7444.

    Article  PubMed  CAS  Google Scholar 

  • Gollisch, T., & Meister, M. (2008). Modeling convergent on and off pathways in the early visual system. Biological Cybernetics, 99, 263–278.

    Article  PubMed  Google Scholar 

  • Golomb, D., & Ermentrout, G. B. (2001). Bistability in pulse propagation in networks of excitatory and inhibitory populations. Physical Review Letters, 86, 4179.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 86, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., & Schwarz, J. H. (1983). Principles of neural science. New York: Elsevier.

    Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010). Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D, 239, 547–560.

    Article  Google Scholar 

  • Kim, K. J., & Rieke, F. (2001). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Journal of Neuroscience, 21, 287–299.

    PubMed  CAS  Google Scholar 

  • Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23, 1506–1516.

    PubMed  CAS  Google Scholar 

  • Krahe, R., Bastian, J., & Chacron, M. J. (2008). Temporal processing across multiple topographic maps in the electrosensory system. Journal of Neurophysiology, 100, 852–867.

    Article  PubMed  Google Scholar 

  • Laing, C., & Coombes, S. (2006). The importance of different timings of excitatory and inhibitory pathways in neural field models. Network, 17, 151.

    Article  PubMed  Google Scholar 

  • Lefebvre, J., Longtin, A., & LeBlanc, V. G. (2009). Dynamics of driven recurrent networks of on and off cells. Physics Review E, 80, 041912.

    Article  Google Scholar 

  • Lefebvre, J., Longtin, A., & Leblanc, V. G. (2010). Oscillatory response in a sensory network of on and off cells with instantaneous and delayed recurrent connections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 455–467.

    Article  CAS  Google Scholar 

  • Liang, Z., & Freed, M. A. (2010). The on pathway rectifies the off pathway of the mammalian retina. Journal of Neuroscience, 30, 5533–5543.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, B., Doiron, B., & Longtin, A. (2005). Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Physics Review E, 72, 061919.

    Article  Google Scholar 

  • Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10, 25–45.

    Article  PubMed  CAS  Google Scholar 

  • Ly, C., & Ermentrout, G. B. (2010). Analysis of recurrent networks of pulse-coupled noisy neural oscillators. SIAM Journal of Applied Dynamical Systems, 9, 113–137.

    Article  Google Scholar 

  • Maler, L., Sas, E., Johnston, S., & Ellis, W. (1991). An atlas of the brain of the electric fish Apteronotus leptorhynchus. Journal of Chemical Neuroanatomy, 4, 1–38.

    Article  PubMed  CAS  Google Scholar 

  • Marinazzo, D., Kappen, H. J., & Gielen, S. C. A. M. (2007). Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses. Neural Computation, 19, 1739–1765.

    Article  PubMed  Google Scholar 

  • Mathieson, W. B., & Maler, L. (1988). Morphological and electrophysiological properties of a novel in vitro preparation: The electrosensory lateral line lobe brain slice. Journal of Comparative Physiology A, 163, 489–506.

    Article  CAS  Google Scholar 

  • Mehaffey, W. H., Maler, L., & Turner, R. W. (2008). Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. Journal of Neurophysiology, 99, 2641–2655.

    Article  PubMed  Google Scholar 

  • Pauluis, Q. (2000). Statistical signs of common inhibitory feedback with delay. Neural Computation, 12, 2513–2518.

    Article  PubMed  CAS  Google Scholar 

  • Pauluis, Q., Baker, S. N., & Olivier, E. (1999). Emergent oscillations in a realistic network: The role of inhibition and the effect of the spatiotemporal distribution of the input. Journal of Computatational Neuroscience, 6, 27–48.

    Article  CAS  Google Scholar 

  • Prescott, S. A., et al. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. Journal of Neuroscience, 26, 9084–9097.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, S. A., & Sejnowski, T. J. (2008). Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. Journal of Neuroscience, 28, 13649–13661.

    Article  PubMed  CAS  Google Scholar 

  • Robin, D. A., & Royer, F. L. (1987). Auditory temporal processing: Two-tone flutter fusion and a model of temporal integration. Journal of the Acoustical Society of America, 82, 1207.

    Article  PubMed  CAS  Google Scholar 

  • Sah, P., & Davies, P. (2000). Calcium-activated potassium currents in mammalian neurons. Clinical and Experimental Pharmacology and Physiology, 27, 657–663.

    Article  PubMed  CAS  Google Scholar 

  • Scholl, B., Gao, X., & Wehr, M. (2010). Nonoverlapping sets of synapses drive on responses and off responses in auditory cortex. Neuron, 65, 412–421.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, E., & Tank, D. W. (1994). In vivo Ca2 + dynamics in a cricket auditory neuron: An example of chemical computation. Science, 263, 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Storm, J. F. (1990). Potassium currents in hippocampal pyramidal cells. Progress in Brain Research, 83, 161–187.

    Article  PubMed  CAS  Google Scholar 

  • van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computation, 13, 959–992.

    Article  PubMed  Google Scholar 

  • Wang, X. J., Liu, Y., Sanchez-Vives, M. V., & McCormick, D. A. (2003). Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of Neurophysiology, 89, 3279–3293.

    Article  PubMed  Google Scholar 

  • Whittington, M. A., Traub, R. D., & Jeffery’s, J. G. R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z., Payne, J. R., & Nelson, M. E. (1996). Logarythmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. Journal of Neurophysiology, 76, 2020–2032.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremie Lefebvre.

Additional information

Action Editor: Brent Doiron

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, J., Longtin, A. & LeBlanc, V.G. Neural adaptation facilitates oscillatory responses to static inputs in a recurrent network of ON and OFF cells. J Comput Neurosci 31, 73–86 (2011). https://doi.org/10.1007/s10827-010-0298-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0298-4

Keywords

Navigation