Skip to main content
Log in

Dynamics of coupled thalamocortical modules

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We develop a model of thalamocortical dynamics using a shared population of thalamic neurons to couple distant cortical regions. Behavior of the model is determined as a function of the connection strengths with shared and unshared populations in the thalamus, either within a relay nucleus or the reticular nucleus. When the coupling is via the reticular nucleus, we locate solutions of the model where distant cortical regions maintain the same activity level, and regions where one region maintains an elevated activity level, suppressing activity in the other. We locate and investigate a region where both types of solutions exist and are stable, yielding a mechanism for spontaneous changes in global activity patterns. Power spectra and coherence are computed, and marked differences in the coherence are found between the two kinds of modes. When, on the other hand, the coupling is via a shared relay nuclei, the features seen with the reticular coupling are absent. These considerations suggest a role for the reticular nucleus in modulating long distance cortical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. \(\sigma_E^2\) is the effective variance. The actual variance used by the integrator is scaled by the square root of the time step, \(\sqrt{dt}\sigma_E^2\).

References

  • Barbas, H., & Rempel-Clower, N. (1997). Cortical structure predicts the pattern of corticocortical connections. Cerebral Cortex, 7, 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree, J. W., & Isaac, J. T. (2002). New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. Journal of Neuroscience, 22(19), 8754–8761.

    CAS  PubMed  Google Scholar 

  • Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81, 4586–4590.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M. P., Victor, J. D., & Schiff, N. D. (2000). Power spectra and coherence in the eeg of a vegetative patient with severe asymmetric brain damage. Clinical Neurophysiology, 111, 1949–1954.

    Article  CAS  PubMed  Google Scholar 

  • David, O., & Friston, K. J. (2003). A neural mass model for meg/eeg coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.

    Article  PubMed  Google Scholar 

  • Debellis, R. (2007). Dynamics of a mathematical model of thalamocortical interactions and implications on arousal and sleep states. PhD thesis, Weill Medical College of Cornell University.

  • Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.

    CAS  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., & Steriade, M. (1999). Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience, 92(2), 427–443.

    Article  CAS  PubMed  Google Scholar 

  • Engelborghs, K., Luzyanina, T., & Roose, D. (2002). Numerical bifurcation analysis of delay differential equations using dde-biftool. ACM Transactions on Mathematical Software, 28(1), 361–385.

    Article  Google Scholar 

  • Freyer, F., Aquino, K., Robinson, P. A., Ritter, P., & Breakspear, M. (2009). Bistability and non-gaussian fluctuations in spontaneous cortical activity. The Journal of Neuroscience, 29(26), 8512–8524.

    Article  CAS  PubMed  Google Scholar 

  • Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G. (2009). Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Disorder of Consciousness: Annals of the New York Academy of Sciences, 1157, 10–23.

    Article  Google Scholar 

  • Pesaran, B., Nelson, M. J., & Anderson, R. A. (2008). Free choice activates a decision circuit between frontal and parietal cortex. Nature, 453, 406–409.

    Article  CAS  PubMed  Google Scholar 

  • Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., & Anderson, R. A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5, 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Raos, V., & Bentivoglio, M. (1993). Crosstalk between the two sides of the thalamus through the reticular nucleus: A retrograde and anterograde tracing study in the rat. Journal of Comparative Neurology, 332(2), 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Rennie, C. J., Robinson, P. A., & Wright, J. J. (2002). Unified neurophysical model of eeg spectra and evoked potentials. Biological Cybernetics, 86, 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Rigas, P., & Castro-Alamancos, M. A. (2007). Thalamocortical up states: Differential effects of intrinsic and extrinsic cortical inputs on persitent activity. Journal of Neuroscience, 27, 4261–4272.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P. A., Rennie, C. J., & Rowe, D. L. (2002). Dynamics of large-scale brain activity in normal arousal states and eplieptic seizures. Physical Review, E, 65, 041924.

    Article  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., Wright, J. J., & Bourke, P. D. (1998). Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review, E, 58(3), 3557–3571.

    Article  CAS  Google Scholar 

  • Rodriguez, E., et al. (1999). Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397, 430–433.

    Article  CAS  PubMed  Google Scholar 

  • Schiff, N. D., & Purpura, K. P. (2002). Towards a neurophysiological foundation for cognitive neuromodulation through deep brain stimulation. Thalamus and Related Systems, 2, 55–69.

    Google Scholar 

  • Skinner, J. E., & Yingling, C. D. (1977). Gating of thalamic input to the cerebral cortex by nucleus reticularis thalami. Progress in Clinical Neurophysiology, 1, 70–96.

    Google Scholar 

  • Thompson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70, 1055–1096.

    Article  Google Scholar 

  • Truex, R. C., & Carpenter, M. B. (1969). Human neuronanatomy. The Williams & Wilkins Company.

  • Velayos, J. L., Jimenez-Castellanos, Jr., J., & Reinoso-Suarez, F. (1989). Topographical organization of the projections from the reticular thalamic nucleus to the intralaminar and medial thalamic nuclei in the cat. Journal of Comparative Neurology, 279(3), 457–469.

    Article  CAS  PubMed  Google Scholar 

  • Victor, J. D., Williams, S. T., Conte, M. M., Drover, J. D., & Schiff, N. D. (2009). Fluctuating EEG coherence in chronic brain injury. (Abstract) Program No. 541.1.2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.

  • Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. Heidelberg: Springer.

    Google Scholar 

Download references

Acknowledgements

JDD support from the Swartz Foundation. The authors also wish to thank Haim Sompolinsky and G. Bard Ermentrout for their time and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Drover.

Additional information

Action Editor: David Golomb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drover, J.D., Schiff, N.D. & Victor, J.D. Dynamics of coupled thalamocortical modules. J Comput Neurosci 28, 605–616 (2010). https://doi.org/10.1007/s10827-010-0244-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0244-5

Keywords

Navigation