Skip to main content
Log in

Mixed mode oscillations as a mechanism for pseudo-plateau bursting

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes riding on top of an elevated voltage plateau. Oscillations with these characteristics have been called “pseudo-plateau bursting”. Unlike standard bursting, the subsystem of fast variables does not possess a stable branch of periodic spiking solutions, and in the case studied here the standard fast/slow analysis provides little information about the underlying dynamics. We demonstrate that the bursting is actually a canard-induced mixed mode oscillation, and use canard theory to characterize the dynamics of the oscillation. We also use bifurcation analysis of the full system of equations to extend the results of the singular analysis to the physiological regime. This demonstrates that the combination of these two analysis techniques can be a powerful tool for understanding the pseudo-plateau bursting oscillations that arise in electrically excitable pituitary cells and isolated pancreatic β-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Benoit, E. (1983). Syst‘emes lents-rapides dans r3 et leur canards. Asterisque, 109–110, 159–191.

    Google Scholar 

  • Brons, M., Kaper, T. J., & Rotstein, H. G. (2008). Introduction to focus issue: mixed mode oscillations: Experiment, computation, and analysis. Chaos, 18, 015101.

    Article  PubMed  Google Scholar 

  • Brons, M., Krupa, M., & Wechselberger, M. (2006). Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49, 39–63.

    Google Scholar 

  • Desroches, M., Krauskopf, B., Osinga, H. M. (2008). Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos, 18, 015107.

    Article  PubMed  Google Scholar 

  • Drover, J., et al. (2005). Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM Journal on Applied Mathematics, 65, 69–92.

    Article  Google Scholar 

  • Erchova, I., & McGonigle, D. J. (2008). Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18, 015115.

    Article  PubMed  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM Books.

    Google Scholar 

  • Ermentrout, G. B., & Wechselberger, M. (2009). Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM Journal On Applied Dynamical Systems, 8, 253–278.

    Article  Google Scholar 

  • Fenichel, N. (1979). Geometric singular perturbation theory. Journal of Differential Equations, 31, 53–98.

    Article  Google Scholar 

  • Van Goor, F. V., et al. (2001). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Journal of Biological Chemistry, 276, 33840–33846.

    Article  PubMed  Google Scholar 

  • Guckenheimer, J. (2008). Singular Hopf bifurcation in systems with two slow variables. SIAM Journal On Applied Dynamical Systems, 7, 1355–1377.

    Article  Google Scholar 

  • Guckenheimer, J., et al. (1997). Bifurcation, bursting, and spike frequency adaptation. Journal of Computational Neuroscience, 4, 257–277.

    Article  CAS  PubMed  Google Scholar 

  • Jones, C. K. R. T. (1995). Geometric singular perturbation theory. In R. Johnson (Ed.), Dynamical systems. Lecture notes in mathematics (Vol. 1609, pp. 44–120). New York: Springer.

    Google Scholar 

  • Kinard, T. A., et al. (1999). Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophysical Journal, 76(3), 1423–1435.

    Article  CAS  PubMed  Google Scholar 

  • Krupa, M., et al. (2008). Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos, 18, 015106.

    Article  PubMed  Google Scholar 

  • Krupa, M., & Wechselberger, M. (2010). Local analysis near a folded saddle-node singularity. Journal of Differential Equations. doi:10.1016/j.jde.2010.02.006.

    Google Scholar 

  • Kuryshev, Y. A., Childs, G. V., & Ritchie, A. K. (1996). Corticotropin-releasing hormone stimulates Ca2 +  entry through L- and P-type Ca2 +  channels in rat corticotropes. Endocrinology, 137, 2269–2277.

    Article  CAS  PubMed  Google Scholar 

  • LeBeau, A. P., et al. (1998). Analysis of a reduced model of corticotroph action potentials. Journal of Theoretical Biology, 192, 319–339.

    Article  CAS  PubMed  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  CAS  PubMed  Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto, & M. Yamaguti (Eds.), Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics (Vol. 71, pp. 267–281). Berlin: Springer.

    Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling: From synapses to networks (2nd ed., pp. 251–292). Cambridge: MIT.

    Google Scholar 

  • Rotstein, H., Wechselberger, M., & Kopell, N. (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal of Dynamic Systems, 7, 1582–1611.

    Article  Google Scholar 

  • Rubin, J., & Wechselberger, M. (2007). Giant squid-hidden canard: The 3D geometry of the Hodgkin–Huxley model. Biological Cybernetics, 97, 5–32.

    Article  PubMed  Google Scholar 

  • Shorten, P. R., et al. (2000). CRH-induced electrical activity and calcium signalling in pituitary corticotrophs. Journal of Theoretical Biology, 206, 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Stern, J. V. (2008). Resetting behavior in a model of bursting in secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus. Bulletin of Mathematical Biology, 70, 68–88.

    Article  PubMed  Google Scholar 

  • Szmolyan, P., & Wechselberger, M. (2001). Canards in ℝ3. Journal of Differential Equations, 177, 419–453.

    Article  Google Scholar 

  • Szmolyan, P., & Wechselberger, M. (2004). Relaxation oscillations in ℝ3. Journal of Differential Equations, 200, 69–104.

    Article  Google Scholar 

  • Tabak, J., et al. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. Journal of Computational Neuroscience, 22, 211–222.

    Article  PubMed  Google Scholar 

  • Toporikova, N., et al. (2008). A-type K +  current can act as a trigger for bursting in the absence of a slow variable. Neural Computation, 20, 436–451.

    Article  PubMed  Google Scholar 

  • Tsaneva-Atanasova, K., et al. (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: Experiments and theory. Journal of Neurophysiology, 98, 131–144.

    Article  CAS  PubMed  Google Scholar 

  • Wechselberger, M., (2005). Existence and bifurcation of canards in ℝ3 in the case of a folded node. SIAM Journal of Dynamic Systems, 4, 101–139.

    Article  Google Scholar 

  • Zhang, M., et al. (2003). The Ca2 +  dynamics of isolated mouse β-cells and islets: Implications for mathematical models. Biophysical Journal, 84, 2852–2870.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health grant DA 43200 and National Science Foundation grant DMS 0917664 to RB. MW thanks the Vienna University of Technology and the Mathematical Biosciences Institute at Ohio State University for sabbatical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wechselberger.

Additional information

Action Editor: J. Rinzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo, T., Bertram, R., Tabak, J. et al. Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J Comput Neurosci 28, 443–458 (2010). https://doi.org/10.1007/s10827-010-0226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0226-7

Keywords

Navigation