Skip to main content
Log in

Fast Kalman filtering on quasilinear dendritic trees

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Optimal filtering of noisy voltage signals on dendritic trees is a key problem in computational cellular neuroscience. However, the state variable in this problem—the vector of voltages at every compartment—is very high-dimensional: realistic multicompartmental models often have on the order of N = 104 compartments. Standard implementations of the Kalman filter require O(N 3) time and O(N 2) space, and are therefore impractical. Here we take advantage of three special features of the dendritic filtering problem to construct an efficient filter: (1) dendritic dynamics are governed by a cable equation on a tree, which may be solved using sparse matrix methods in O(N) time; and current methods for observing dendritic voltage (2) provide low SNR observations and (3) only image a relatively small number of compartments at a time. The idea is to approximate the Kalman equations in terms of a low-rank perturbation of the steady-state (zero-SNR) solution, which may be obtained in O(N) time using methods that exploit the sparse tree structure of dendritic dynamics. The resulting methods give a very good approximation to the exact Kalman solution, but only require O(N) time and space. We illustrate the method with applications to real and simulated dendritic branching structures, and describe how to extend the techniques to incorporate spatially subsampled, temporally filtered, and nonlinearly transformed observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Kellems et al. (2009) recently introduced powerful model-reduction methods for decreasing the effective dimensionality of the state vector in large dendritic voltage simulations; these methods are distinct from the techniques we introduce in this paper, but there are a number of interesting connections between these methods which we will describe below.

  2. In some cases it is overly crude to assume that the observations y t are linearly and instantaneously related to the voltage V t ; we will discuss extensions to this basic setup in Section 4 below.

  3. We will assume throughout this paper that the structural anatomy of the dendritic tree (i.e., the neighborhood structure N(x)) is fully known.

  4. For simplicity, we focus exclusively on the forward Kalman filter recursion in this paper, to compute p(V t |Y 1:t ), but note that all of the methods discussed here can be applied to obtain the forward-backward (Kalman smoother) density p(V t |Y 1:T ), for t < T.

  5. It is well-known that the Woodbury formula can be numerically unstable when the observation covariance W is small (i.e., the high-SNR case). Our applications here concern the low-SNR case instead, and therefore we have not had trouble with these numerical instabilities. However, it should be straightforward to derive a low-rank square-root filter (Howard and Jebara 2005; Treebushny and Madsen 2005; Chandrasekar et al. 2008) to improve the numerical stability here, if needed.

  6. We have suppressed the input current i t (x) and noise ε t (x) in the following, for notational simplicity; inclusion of the input current term does not significantly complicate the derivations in this section, since the steady-state covariance C 0 does not depend on i t (x).

  7. We do not have a good theoretical explanation for this fact; this is a purely empirical observation. Indeed, we have found that if the noise scale D varies discontinuously along the tree, then S i tends to be much less sparse, sharply reducing the efficacy of this procedure.

References

  • Antoulas, A. (2005). Approximation of large-scale dynamical systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Araya, R., Eisenthal, K. B., & Yuste, R. (2006). Dendritic spines linearize the summation of excitatory potentials. PNAS, 103(49), 18799–18804.

    Article  CAS  PubMed  Google Scholar 

  • Bell, J., & Craciun, G. (2005). A distributed parameter identification problem in neuronal cable theory models. Mathematical Biosciences, 194(1), 1–19.

    Article  PubMed  Google Scholar 

  • Bloomfield, S., & Miller, R. (1986). A functional organization of ON and OFF pathways in the rabbit retina. Journal of Neuroscience, 6(1), 1–13.

    CAS  PubMed  Google Scholar 

  • Brette, R., Piwkowska, Z., Rudolph, M., Bal, T., & Destexhe, A. (2007). A nonparametric electrode model for intracellular recording. Neurocomputing, 70, 1597–1601.

    Article  Google Scholar 

  • Brockwell, P., & Davis, R. (1991). Time Series: Theory and methods. New York: Springer.

    Book  Google Scholar 

  • Brown, E., Frank, L., Tang, D., Quirk, M., & Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411–7425.

    CAS  PubMed  Google Scholar 

  • Canepari, M., Djurisic, M., & Zecevic, D. (2007). Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: A combined voltage- and calcium-imaging study. J Physiol, 580(2), 463–484.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar, J., Kim, I., Bernstein, D., & Ridley, A. (2008). Cholesky-based reduced-rank square-root Kalman filtering. American Control Conference, 10, 3987–3992.

    Article  Google Scholar 

  • Coombes, S., Timofeeva, Y., Svensson, C. M., Lord, G. J., Josic, K., Cox, S. J., & Colbert, C. M. (2007). Branching dendrites with resonant membrane: a sum-over-trips approach. Biological Cybernetics, 97(2), 137–149.

    Article  CAS  PubMed  Google Scholar 

  • Cox, S. (2004). Estimating the location and time course of synaptic input from multi-site potential recordings. Journal of Computational Neuroscience, 17, 225–243.

    Article  PubMed  Google Scholar 

  • Cox, S., & Griffith, B. (2001). Recovering quasi-active properties of dendrites from dual potential recordings. Journal of Computational Neuroscience, 11, 95–110.

    Article  CAS  PubMed  Google Scholar 

  • Cox, S. J., & Raol, J. H. (2004). Recovering the passive properties of tapered dendrites from single and dual potential recordings. Mathematical Biosciences, 190(1), 9–37.

    Article  PubMed  Google Scholar 

  • Djurisic, M., Antic, S., Chen, W. R., & Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. Journal of Neuroscience, 24(30), 6703–6714.

    Article  CAS  PubMed  Google Scholar 

  • Djurisic, M., Popovic, M., Carnevale, N., & Zecevic, D. (2008). Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. Journal of Neuroscience, 28(15), 4057–4068.

    Article  CAS  PubMed  Google Scholar 

  • Doucet, A., de Freitas, N., & Gordon, N., (Eds.) (2001). Sequential Monte Carlo in Practice. New York: Springer.

    Google Scholar 

  • Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. Oxford: Oxford University Press.

    Google Scholar 

  • Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. New York: Springer.

    Google Scholar 

  • Fedorov, V. (1972). Theory of optimal experiments. New York: Academic.

    Google Scholar 

  • Gillijns, S., Bernstein, D., & De Moor, B. (2006). The reduced rank transform square root filter for data assimilation. In Proc. of the 14th IFAC Symposium on System Identification.

  • Gobel, W., & Helmchen, F. (2007). New angles on neuronal dendrites in vivo. Journal of Neurophysiology, 98(6), 3770–3779.

    Article  PubMed  Google Scholar 

  • Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Bio-Medical Computing, 15(1), 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Holekamp, T., Turaga, D., & Holy, T. (2008). Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron, 57, 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Howard, A., & Jebara, T. (2005). Square root propagation. Columbia University Computer Science Technical Reports, 040-05.

  • Huys, Q., Ahrens, M., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96, 872–890.

    Article  PubMed  Google Scholar 

  • Huys, Q., & Paninski, L. (2009). Model-based smoothing of, and parameter estimation from, noisy biophysical recordings. PLOS Computational Biology, 5, e1000379.

  • Johnston, D., Magee, J. C., Colbert, C. M., & Cristie, B. R. (1996). Active properties of neuronal dendrites. Annual review Neuroscience, 19, 165–186.

    Article  CAS  Google Scholar 

  • Jordan, M. I. (Ed.) (1999). Learning in graphical models. Cambridge: MIT.

    Google Scholar 

  • Kellems, A., Roos, D., Xiao, N., & Cox, S. (2009). Low-dimensional, morphologically accurate models of subthreshold membrane potential. Journal of Computational Neuroscience, 27, 161–176.

    Article  PubMed  Google Scholar 

  • Knopfel, T., Diez-Garcia, J., & Akemann, W. (2006). Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends in Neurosciences, 29, 160–166.

    Article  PubMed  Google Scholar 

  • Koch, C. (1984). Cable theory in neurons with active, linearized membranes. Biological Cybernetics, 50, 15–33.

    Article  CAS  PubMed  Google Scholar 

  • Kole, M., Ischner, S., Kampa, B., Williams, S., Ruben, P., & Stuart, G. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Larkum, M. E., Watanabe, S., Lasser-Ross, N., Rhodes, P., & Ross, W. N. (2008). Dendritic properties of turtle pyramidal neurons. Journal of neurophysiology, 99(2), 683–694.

    Article  PubMed  Google Scholar 

  • Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Computation, 21, 619–687.

    Article  PubMed  Google Scholar 

  • Manwani, A., & Koch, C. (1999). Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources. Neural Computation, 11(8), 1797–1829.

    Article  CAS  PubMed  Google Scholar 

  • Morse, T., Davison, A., & Hines, M. (2001). Parameter space reduction in neuron model optimization through minimization of residual voltage clamp current. Society for Neuroscience Abstracts.

  • Palmer, L. M., & Stuart, G. J. (2006). Site of action potential initiation in layer 5 pyramidal neurons. Journal of Neuroscience, 26(6), 1854–1863.

    Article  CAS  PubMed  Google Scholar 

  • Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama, K., Vidne, M., et al. (2009). A new look at state-space models for neural data. doi:10.1007/s10827-009-0179-x.

  • Paninski, L., & Ferreira, D. (2008). State-space methods for inferring synaptic inputs and weights. COSYNE.

  • Petrusca, D., Grivich, M. I., Sher, A., Field, G. D., Gauthier, J. L., Greschner, M., et al. (2007). Identification and characterization of a Y-like primate retinal ganglion cell type. Journal of Neuroscience, 27(41), 11019–11027.

    Article  CAS  PubMed  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sabino, J. (2007). Solution of large-scale Lyapunov equations via the block modified Smith method. PhD thesis, Rice University.

  • Sacconi, L., Dombeck, D. A., & Webb, W. W. (2006). Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials. Proceedings of the National Academy of Sciences, 103(9), 3124–3129.

    Article  CAS  Google Scholar 

  • Shental, O., Bickson, D., Siegel, P. H., Wolf, J. K., & Dolev, D. (2008). Gaussian belief propagation for solving systems of linear equations: Theory and application. arXiv:0810.1119v1.

  • Sjostrom, P. J., Rancz, E. A., Roth, A., & Hausser, M. (2008). Dendritic Excitability and Synaptic Plasticity. Physiological Reviews, 88(2), 769–840.

    Article  CAS  PubMed  Google Scholar 

  • Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience, 9, 206–221.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, G., & Sakmann, B. (1994). Active propagation of somatic action potential into neocortical pyramidal cell dendrites. Nature, 367, 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, G., Spruston, N., & Häusser, M., (Eds.) (1999). Dendrites. Oxford: Oxford University Press.

    Google Scholar 

  • Treebushny, D., & Madsen, H. (2005). On the construction of a reduced rank square-root kalman filter for efficient uncertainty propagation. Future Generations Computer Systems, 21, 1047–1055.

    Article  Google Scholar 

  • Verlaan, M. (1998). Efficient Kalman filtering algorithms for hydrodynamic models. PhD thesis, TU Delft.

  • Vucinic, D., & Sejnowski, T. J. (2007). A compact multiphoton 3d imaging system for recording fast neuronal activity. PLoS ONE, 2(8), e699.

    Article  Google Scholar 

  • Weiss, Y., & Freeman, W. T. (2001). Correctness of belief propagation in gaussian graphical models of arbitrary topology. Neural Computation, 13(10), 2173–2200.

    Article  CAS  PubMed  Google Scholar 

  • Wood, R., Gurney, K., & Wilson, C. (2004). A novel parameter optimisation technique for compartmental models applied to a model of a striatal medium spiny neuron. Neurocomputing, 58–60, 1109–1116.

    Article  Google Scholar 

Download references

Acknowledgements

LP is supported by a McKnight Scholar award and an NSF CAREER award. I thank Q. Huys, K. Rahnama Rad, and J. Vogelstein for many helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Paninski.

Additional information

Action Editor: Wulfram Gerstner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paninski, L. Fast Kalman filtering on quasilinear dendritic trees. J Comput Neurosci 28, 211–228 (2010). https://doi.org/10.1007/s10827-009-0200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0200-4

Keywords

Navigation