Skip to main content
Log in

Motor pattern selection by combinatorial code of interneuronal pathways

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur–tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and “active reaction” in walking, both elicited by the same sensory input. The femur–tibia network was modeled by fitting the responses of model neurons to those obtained in animals. The strengths of 16 interneuronal pathways that integrate sensory input were then assigned three different values and varied independently, generating a database of more than 43 million network variants. We demonstrate that the same neural network can produce the two different behaviors, depending on the combinatorial code of interneuronal pathways. That is, a switch between behaviors, such as standing to walking, can be brought about by altering the strengths of selected sensory integration pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akay, T. (2002). The role of sensory signals for interjoint coordination in stick insect legs (Carausius morosus and Cuniculina impigra). (Thesis) Mathematisch-Naturwissenschaftliche Fakultaet, Ph.D. thesis, University of Cologne.

  • Ausborn, J., Stein, W., & Wolf, H. (2007). Frequency control of motor patterning by negative sensory feedback. Journal of Neuroscience, 27, 9319–9328.

    Article  PubMed  CAS  Google Scholar 

  • Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin: Springer.

    Google Scholar 

  • Bässler, U. (1988). Functional principles of pattern generation for walking movements of stick insect forelegs: The role of the femoral chordotonal organ afferences. Journal of Experimental Biology, 136, 125–147.

    Google Scholar 

  • Bässler, U. (1993). The femur–tibia control system of stick insects—A model system for the study of the neural basis of joint control. Brain Research Brain Research Reviews, 18, 207–226.

    Article  PubMed  Google Scholar 

  • Bässler, U., & Büschges, A. (1990). Interneurones participating in the “active reaction” in stick insects. Biological Cybernetics, 62, 529–538.

    Article  Google Scholar 

  • Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements—Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–88.

    Article  PubMed  Google Scholar 

  • Bässler, U., Wolf, H., & Stein, W. (2007). Functional recovery following manipulation of muscles and sense organs in the stick insect leg. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 1151–1168.

    Article  PubMed  Google Scholar 

  • Baumgardt, M., Miguel-Aliaga, I., Karlsson, D., Ekman, H., & Thor, S. (2007). Specification of neuronal identities by feedforward combinatorial coding. PLoS Biology, 5, e37.

    Article  PubMed  CAS  Google Scholar 

  • Beaujean, D., Rosenbaum, C., Muller, H. W., Willemsen, J. J., Lenders, J., & Bornstein, S. R. (2003). Combinatorial code of growth factors and neuropeptides define neuroendocrine differentiation in PC12 cells. Experimental Neurology, 184, 348–358.

    Article  PubMed  CAS  Google Scholar 

  • Bergdoll, S., & Koch, U. T. (1995). BIOSIM—A biological neural network simulator for research and teaching, featuring interactive graphical user interface and learning capabilities. Neurocomputing, 8, 93–112.

    Article  Google Scholar 

  • Büschges, A. (1989). Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. Journal of Experimental Biology, 144, 81–111.

    Google Scholar 

  • Büschges, A. (1990). Nonspiking pathways in a joint-control loop of the stick insect. Journal of Experimental Biology, 151, 133–160.

    Google Scholar 

  • Büschges, A. (1994). The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. Journal of Experimental Biology, 189, 285–292.

    PubMed  Google Scholar 

  • Büschges, A., Ludwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.

    Article  PubMed  Google Scholar 

  • Büschges, A., & Wolf, H. (1995). Nonspiking local interneurons in insect leg motor control I. Common layout and species-specific response properties of femur–tibia joint control pathways in stick insect and locust. Journal of Neurophysiology, 73, 1843–1860.

    PubMed  Google Scholar 

  • Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. Trends in Neurosciences, 13, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Driesang, R. B., & Büschges, A. (1996). Physiological changes in central neuronal pathways contributing to the generation of a reflex reversal. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 179, 45–57.

    Google Scholar 

  • Ekeberg, Ö., Wallén, P., Lansner, A., Travén, H., Brodin, L., & Grillner, S. (1991). A computer based model for realistic simulations of neural networks. Biological Cybernetics, 65, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Esch, T., & Kristan, W. B., Jr. (2002). Decision-making in the leech nervous system. Integrative and Comparative Biology, 42, 716.

    Article  Google Scholar 

  • Grillner, S., Georgopoulos, A. P., & Jordan, L. M. (1997). Selection and initiation of motor behavior. In P. S. G. Stein, S. Grillner, A. I. Selverstone, & D. G. Stuart (Eds.), Neurons, networks and motor behavior (pp. 3–20). Cambridge: MIT.

    Google Scholar 

  • Hattox, A., Li, Y., & Keller, A. (2003). Serotonin regulates rhythmic whisking. Neuron, 39, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hofmann, T., Koch, U. T., & Bässler, U. (1985). Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. Journal of Experimental Biology, 114, 207–223.

    Google Scholar 

  • Hounsgaard, J., & Kiehn, O. (1989). Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. Journal of Physiology, 414, 265–282.

    PubMed  CAS  Google Scholar 

  • Jacobs, G. A., & Theunissen, F. E. (1996). Functional organization of a neural map in the cricket cercal sensory system. Journal of Neuroscience, 16, 769–784.

    PubMed  CAS  Google Scholar 

  • Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97, 4296.

    Article  PubMed  Google Scholar 

  • Koh, H. Y., & Weiss, K. R. (2007). Activity-dependent peptidergic modulation of the plateau-generating neuron B64 in the feeding network of Aplysia. Journal of Neurophysiology, 97, 1862–1867.

    Article  PubMed  CAS  Google Scholar 

  • Kristan, W. B., Jr., & Shaw, B. K. (1997). Population coding and behavioral choice. Current Opinion in Neurobiology, 7, 826–831.

    Article  PubMed  Google Scholar 

  • Lieske, S. P., Thoby-Brisson, M., Telgkamp, P., & Ramirez, J. M. (2000). Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps. Nature Neuroscience, 3, 600–607.

    Article  PubMed  CAS  Google Scholar 

  • Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96, 713–723.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E. (2000). Motor pattern generation. Current Opinion in Neurobiology, 10, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiology Review, 76, 687–717.

    CAS  Google Scholar 

  • McLean, D. L., & Sillar, K. T. (2004). Metamodulation of a spinal locomotor network by nitric oxide. Journal of Neuroscience, 24, 9561–9571.

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum, M. P., & Beenhakker, M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. G. (2004). Generating the walking gait: Role of sensory feedback. Progress in Brain Research, 143, 123–129.

    Article  PubMed  Google Scholar 

  • Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, A. E., Büschges, A., & Stein, W. (1997). Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. Journal of Neurobiology, 32, 359–376.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, A. E., Driesang, R. B., Büschges, A., & Bässler, U. (1995). Information processing in the femur–tibia control loop of stick insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 177, 145–158.

    Google Scholar 

  • Sauer, A. E., Driesang, R. B., Büschges, A., Bässler, U., & Borst, A. (1996). Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur–tibia control system in the stick insect. Journal of Computational Neuroscience, 3, 179–198.

    Article  PubMed  CAS  Google Scholar 

  • Simmers, J., & Moulins, M. (1988). Nonlinear interneuronal properties underlie integrative flexibility in a lobster disynaptic sensorimotor pathway. Journal of Neurophysiology, 59, 757–777.

    PubMed  CAS  Google Scholar 

  • Smith, D. V., & St. John, S. J. (1999). Neural coding of gustatory information. Current Opinion in Neurobiology, 9, 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D. L., Kristan, W. B., & Shaw, B. K. (1997). The role of population coding in the control of movement. In P. S. G. Stein, S. Grillner, A. I. Selverston, & D. G. Stuart (Eds.), Neurons, networks and motor behavior (pp. 21–32). Cambridge: MIT.

    Google Scholar 

  • Stein, W., & Ausborn, J. (2004). Analog modulation of digital computation in nerve cells: Simulating the stomatogastric nervous system of the crab. In C. Bobeanu (Ed.), Modelling and simulation ‘2004 (pp. 148–152). Ghent (Belgium): Eurosis-ETI.

    Google Scholar 

  • Stein, W., Büschges, A., & Bässler, U. (2006). Intersegmental transfer of sensory signals in the stick insect leg muscle control system. Journal of Neurobiology, 66, 1253–1269.

    Article  PubMed  Google Scholar 

  • Stein, W., & Sauer, A. E. (1998). Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 183, 489–501.

    Article  Google Scholar 

  • Straub, O., Mader, W., Ausborn, J., & Stein, W. (2004). Motor output variability in a joint control system—A simulation study. In C. Bobeanu (Ed.), Modelling and simulation ‘2004 (pp. 135–139). Ghent (Belgium): Eurosis-ETI.

    Google Scholar 

  • Tryba, A. K., Pena, F., & Ramirez, J. M. (2006). Gasping activity in vitro: A rhythm dependent on 5-HT2A receptors. Journal of Neuroscience, 26, 2623–2634.

    Article  PubMed  CAS  Google Scholar 

  • Weiland, G., & Koch, U. T. (1987). Sensory feedback during active movements of stick insects. Journal of Experimental Biology, 133, 137–156.

    Google Scholar 

  • Wolf, H., Bässler, U., Spieß, R., & Kittmann, R. (2001). The femur–tibia control system in a proscopiid (Caelifera, Orthoptera): A test for assumptions on the functional basis and evolution of twig mimesis in stick insects. Journal of Experimental Biology, 204, 3815–3828.

    PubMed  CAS  Google Scholar 

  • Wolf, H., & Burrows, M. (1995). Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking. Journal of Neuroscience, 15, 5623–5636.

    PubMed  CAS  Google Scholar 

  • Woolley, S. M. N., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. Journal of Neuroscience, 26, 2499–2512.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Arne Sauer for his help with the project. The Communication and Information Center of Ulm University, and namely Peter Schulthess, permitted use of their computer facilities as an essential prerequisite for our exhaustive search strategy. Jessica Ausborn was supported by a scholarship of the Studienstiftung des Deutschen Volkes during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stein.

Additional information

Action Editor: Frances K. Skinner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Supplementary material regarding Fig. 7 (PDF 195 kb)

Supplementary material 2

Supplementary material regarding Fig. 14 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, W., Straub, O., Ausborn, J. et al. Motor pattern selection by combinatorial code of interneuronal pathways. J Comput Neurosci 25, 543–561 (2008). https://doi.org/10.1007/s10827-008-0093-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0093-7

Keywords

Navigation