Skip to main content
Log in

Dendritic action potentials connect distributed dendrodendritic microcircuits

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Lateral inhibition of cells surrounding an excited area is a key property of sensory systems, sharpening the preferential tuning of individual cells in the presence of closely related input signals. In the olfactory pathway, a dendrodendritic synaptic microcircuit between mitral and granule cells in the olfactory bulb has been proposed to mediate this type of interaction through granule cell inhibition of surrounding mitral cells. However, it is becoming evident that odor inputs result in broad activation of the olfactory bulb with interactions that go beyond neighboring cells. Using a realistic modeling approach we show how backpropagating action potentials in the long lateral dendrites of mitral cells, together with granule cell actions on mitral cells within narrow columns forming glomerular units, can provide a mechanism to activate strong local inhibition between arbitrarily distant mitral cells. The simulations predict a new role for the dendrodendritic synapses in the multicolumnar organization of the granule cells. This new paradigm gives insight into the functional significance of the patterns of connectivity revealed by recent viral tracing studies. Together they suggest a functional wiring of the olfactory bulb that could greatly expand the computational roles of the mitral–granule cell network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham, N. M., Spors, H., Carleton, A., Margrie, T. W., Kuner, T., & Schaefer, A. T. (2004). Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron, 44, 865–876.

    PubMed  CAS  Google Scholar 

  • Bischofberger, J., & Jonas, P. (1997). Action potential propagation into the presynaptic dendrites of rat mitral cells. Journal of Physiology, 504, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Cang, J., & Isaacson, J. S. (2003). In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. Journal of Neuroscience, 23, 4108–4116.

    PubMed  CAS  Google Scholar 

  • Chen, W. R., Midtgaard, J., & Shepherd, G. M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science, 278, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. R., Shen, G. Y., Shepherd, G. M., Hines, M. L., & Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 2755–2764.

    Article  PubMed  Google Scholar 

  • Chen, W. R., Xiong, W., & Shepherd, G. M. (2000). Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron, 25, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Christie, J. M., & Westbrook, G. L. (2003). Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. Journal of Neurophysiology, 89, 2466–2472.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, T. A., & Linster, C. (2005). Computation in the olfactory system. Chemical Senses, 30, 801–813.

    Article  PubMed  Google Scholar 

  • Cleland, T. A., & Sethupathy, P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC Neuroscience, 7, 7.

    Article  PubMed  Google Scholar 

  • Davison, A. P., Feng, J., & Brown, D. (2003). Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of Neurophysiology, 90, 1921–1935.

    Article  PubMed  CAS  Google Scholar 

  • Debarbieux, F., Audinat, E., & Charpak, S. (2003). Action potential propagation in dendrites of rat mitral cells in vivo. Journal of Neuroscience, 23, 5553–5560.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 10–14.

    Article  Google Scholar 

  • Egger, V., Svoboda, K., & Mainen, Z. F. (2003). Mechanisms of lateral inhibition in the olfactory bulb: Efficiency and modulation of spike-evoked calcium influx into granule cells. Journal of Neuroscience, 23, 7551–7558.

    PubMed  CAS  Google Scholar 

  • Egger, V., Svoboda, K., & Mainen, Z. F. (2005). Dendrodendritic synaptic signals in olfactory bulb granule cells: Local spine boost and global low-threshold spike. Journal of Neuroscience, 25, 3521–3530.

    Article  PubMed  CAS  Google Scholar 

  • Egger, V., & Urban, N. N. (2006). Dynamic connectivity in the mitral cell–granule cell microcircuit. Seminars in Cell & Developmental Biology, 17, 424–432.

    Article  Google Scholar 

  • Hines, M., & Carnevale, T. (1997). The NEURON simulation environment. Neural Computation, 9, 178–1209.

    Article  Google Scholar 

  • Isaacson, J. S. (2001). Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 98, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990a). A quantitative description of NMDA receptor-channel kinetic behavior. Journal of Neuroscience, 10, 1830–1837.

    PubMed  CAS  Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990b). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.

    PubMed  CAS  Google Scholar 

  • Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.

    PubMed  CAS  Google Scholar 

  • Leon, M., & Johnson, B. A. (2003). Olfactory coding in the mammalian olfactory bulb. Brain Research Review, 42, 23–32.

    Article  Google Scholar 

  • Linster, C., & Hasselmo, M. (1997). Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behavioural Brain Research, 84, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, G. (2002). Inhibition of backpropagating action potentials in mitral cell secondary dendrites. Journal of Neurophysiology, 88, 64–85.

    PubMed  CAS  Google Scholar 

  • Margrie, T. W., Sakmann, B., & Urban, N. N. (2001). Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 98, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Hines, M. L., & Shepherd, G. M. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of Computational Neuroscience, 18, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Nowycky, M. C., & Shepherd, G. M. (1981). Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. Journal of Physiology, 314, 281–294.

    PubMed  CAS  Google Scholar 

  • Mori, K., Takahashi, Y. K., Igarashi, K. M., & Yamaguchi, M. (2006). Maps of odorant molecular features in the Mammalian olfactory bulb. Physiological Reviews, 86, 409–433.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts, P. (1996). Targeting olfaction. Current Opinion in Neurobiology, 6, 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Pinato, G., & Midtgaard, J. (2004). Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells. Journal of Neurophysiology, 93, 1285–1294.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 31, 884–915.

    PubMed  CAS  Google Scholar 

  • Rall, W., Shepherd, G. M., Reese, T. S., & Brightman, M. W. (1966). Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Experimental Neurology, 14, 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79, 1245–1255.

    Article  PubMed  CAS  Google Scholar 

  • Schoppa, N. E., Kinzie, J. M., Sahara, Y., Segerson, T. P., & Westbrook, G. L. (1998). Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. Journal of Neuroscience, 18, 6790–6802.

    PubMed  CAS  Google Scholar 

  • Schoppa, N. E., & Westbrook, G. L. (1999). Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nature Neuroscience, 2, 1106–1113.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M., & Brayton, R. K. (1979). Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Research, 175, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M., & Greer, C. A. (1998). Olfactory bulb. In G. M. Shepherd (Ed.), The synaptic organization of the brain. New York: Oxford University Press, p. 170.

    Google Scholar 

  • Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224–1229.

    Article  PubMed  CAS  Google Scholar 

  • Urban, N. N., & Sakmann, B. (2002). Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. Journal of Physiology, 542, 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Vassar, R., Chao, S. K., Sitcheran, R., Nunez, J. M., Vosshall, L. B., & Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell, 79, 981–991.

    Article  PubMed  CAS  Google Scholar 

  • Wellis, D. P., & Kauer, J. S. (1994). GABAergic and glutamatergic synaptic input to identified granule cells in salamander olfactory bulb. Journal of Physiology, 475, 419–430.

    PubMed  CAS  Google Scholar 

  • Willhite, D. C., Nguyen, K. T., Masurkar, A. V., Greer, C. A., Shepherd, G. M., & Chen, W. R. (2006). Viral tracing identifies distributed columnar organization in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 103, 12592–12597.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, T. B., Shepherd, G. M., & Greer, C. A. (1991). Local information processing in dendritic trees: Subsets of spines in granule cells of the mammalian olfactory bulb. Journal of Neuroscience, 11, 1837–1854.

    PubMed  CAS  Google Scholar 

  • Xiong, W., & Chen, W. R. (2002). Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron, 34, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Xu, F. Q., Liu, N., Kida, I., Rothman, D. L., Hyder, F., & Shepherd, G. M. (2003). Odor maps of aldehydes and esters revealed by fMRI in the glomerular layer of the mouse olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 100, 11029–11034.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi, M., Mori, K., & Nakanishi, S. (1995). Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 92, 3371–3375.

    Article  PubMed  CAS  Google Scholar 

  • Zelles, Y., Boyd, J. D., Hardy, A. B., & Delaney, K. R. (2006). Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. Journal of Neuroscience, 26, 30–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support by the National Institutes of Health Grant DC00086 and DC003918, and the Human Brain Project (National Institute of Deafness and Other Communication Disorders, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institute on Aging, and the National Science Foundation). We thank W. Chen, C. Greer, D. Johnston, J. Midtgaard, W. Rall, and D. Willhite for the valuable suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Migliore.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliore, M., Shepherd, G.M. Dendritic action potentials connect distributed dendrodendritic microcircuits. J Comput Neurosci 24, 207–221 (2008). https://doi.org/10.1007/s10827-007-0051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0051-9

Keywords

Navigation