Skip to main content
Log in

An all-optical ultracompact microring-resonator-based optical switch

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) photonic crystal with a square lattice structure is studied for the title device. The proposed device is designed with a simple structure using a circular ring resonator between two linear waveguides. Its optical switching action is based on the principle of the shift in the resonant wavelength with the refractive index for the whole structure. The refractive index of the material can be controlled externally by varying the temperature. This thermal effect can thus be used to achieve optical switching using the proposed design, which operates at two wavelengths (1554 nm and 1568 nm). Quality factors of 117 and 166 are obtained at the wavelengths of 1554 nm and 1568 nm, while the footprint of the proposed device is 152.13 μm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haret, L.-D., et al.: Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity. Opt. Express 17, 21108–21117 (2009)

    Article  Google Scholar 

  2. Joannopoulos, J., Johnson, S.G., Meade, R., Winn, J.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  3. Yablonovitch, E., Gmitter, T.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63, 1950 (1989)

    Article  Google Scholar 

  4. Chhipa, M.K., Radhouene, M., Dikshit, A., Robinson, S., Suthar, B.: Novel compact optical channel drop filter for CWDM optical network applications. Int. J. Photon. Opt. Technol. 2(4), 26–29 (2016)

    Google Scholar 

  5. Suthar, B., Bharagava, A.: Temperature dependent tunable photonic channel filter. IEEE Photon. Techn. Lett. 24, 338–340 (2012)

    Article  Google Scholar 

  6. Chhipa, M.K., Radhouene, M., Robinson, S., Suthar, B.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107 (2017)

    Article  Google Scholar 

  7. Camargo, E.A., Chong, H.M.H., Rue, R.M.D.L.: 2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Exp. 12, 588–592 (2004)

    Article  Google Scholar 

  8. Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photon. Sens. 7(4), 311–316 (2017)

    Article  Google Scholar 

  9. Nguyen, H.C., et al.: 10 Gb/s operation of photonic crystal silicon optical modulators. Opt. Expr. 19, 13000–13007 (2011)

    Article  Google Scholar 

  10. Nguyen, H.C., et al.: Compact and fast photonic crystal silicon optical modulators. Opt. Exp. 20, 22465–22474 (2012)

    Article  Google Scholar 

  11. Bhargava, A., Suthar, B.: Optical switching in Kerr nonlinear chalcogenide photonic crystal. J. Ovonic Res. 5(6), 187–193 (2009)

    Google Scholar 

  12. Cuesta-Soto, F., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Exp. 12, 161–167 (2004)

    Article  Google Scholar 

  13. Danglot, J., Vanbcsien, O., Lippens, D.: A 4-port resonant switch patterned in a photonic crystal. IEEE Microw. Guided Wave Lett. 9, 274–276 (1999)

    Article  Google Scholar 

  14. Maksymov, I.S., Marsal, L.F., Pallares, J.: Modeling of two-photon absorption in nonlinear photonic crystal all-optical switch. Opt. Commun. 269, 137–141 (2007)

    Article  Google Scholar 

  15. O’Faolain, L., et al.: Compact optical switches and modulators based on dispersion engineered photonic crystals. IEEE Photon. J. 2, 404–414 (2010)

    Article  Google Scholar 

  16. Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018)

    Article  Google Scholar 

  17. Chhipa, M.K., Dusad, L.K.: Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system. AIP Conf. Proc. 1728, 58 (2016)

    Google Scholar 

  18. Suthar, B., Kumar, N.: Magnetic sensor using extrinsic photonic crystal. Adv. Sci. Eng. Med. 10, 854–856 (2018)

    Article  Google Scholar 

  19. Bose, R., Sridharan, D., Kim, H., Solomon, G.S., Waks, E.: Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012)

    Article  Google Scholar 

  20. Hoseini, M., Malekmohammad, M.: All-optical high performance graphene-photonic crystal switch. Opt. Commun. 383, 159–164 (2017)

    Article  Google Scholar 

  21. Husko, C., Rossi, A.D., Combrie, S., Tran, Q.V., Raineri, F., Wong, C.W.: Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett. 94, 021111 (2009)

    Article  Google Scholar 

  22. Nozaki, K., Shinya, A., Matsuo, S., Sato, T., Kuramochi, E., Notomi, M.: Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Opt. Express 21, 11877 (2013)

    Article  Google Scholar 

  23. Palik, E.D.: Handbook of Optical Constants of Solids. Academic, UK (1998)

    Google Scholar 

  24. Leung, K.M., Liu, Y.F.: Photon band structures: the plane-wave method. Phys. Rev. B 41, 10188–10190 (1990)

    Article  Google Scholar 

  25. Komma, J., Schwarz, C., Hofmann, G., Heinert, D., Nawrodt, R.: Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101, 041905 (2012)

    Article  Google Scholar 

  26. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  27. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, New York (1995)

    MATH  Google Scholar 

  28. Jindal, S., Sobti, S., Kumar, M., Sharma, S., Pal, M.K.: Nano cavity coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 16(10), 3705–3710 (2016)

    Article  Google Scholar 

  29. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

  30. Robinson, S., Nakkeeran, R.: Coupled mode theory analysis for circular photonic crystal ring resonator-based add-drop filter. Opt. Eng. 51(11), 114001 (2012)

    Article  Google Scholar 

  31. Djavid, M., Ghaffari, A., Abrishamian, M.S.: Coupled-mode analysis of photonic crystal add–drop filters based on ring resonators. J. Opt. Soc. Am. B 25(11), 1829–1832 (2008)

    Article  Google Scholar 

  32. Manolatou, C., Khan, M.J., Fan, S., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quant. Electron. 35(9), 1322–1331 (1999)

    Article  Google Scholar 

  33. Poon, J.K.S., Scheuer, J., Xu, Y., Yariv, A.: Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21(9), 1665–1673 (2004)

    Article  Google Scholar 

  34. Soma, S., Sonth, M.V., Gowre, S.C.: Tunable optical add/drop filter for CWDM systems using photonic crystal ring resonator. J. Electron. Mater. 48, 7460–7464 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Suthar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhipa, M.K., Madhav, B.T.P. & Suthar, B. An all-optical ultracompact microring-resonator-based optical switch. J Comput Electron 20, 419–425 (2021). https://doi.org/10.1007/s10825-020-01628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01628-w

Keywords

Navigation