Skip to main content
Log in

A theoretical investigation of the optoelectronic performance of some new carbazole dyes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Density functional theory and time-dependent approaches are applied for theoretical investigation of a new class of novel carbazole-based d–D–π–A-type dyes, where the carbazole moiety is the main electron donor, bithiophene behaves as a π-bridge, and cyanoacetic acid as an electron acceptor for all the studied dyes, whereas the terminal electron donor unit is varied to thiophene, thienothiophene, carbazole, dimethoxyphenyl, and indole. The influence of the terminal electron donor on the optoelectronics properties is investigated for the dyes in isolated state and in chloroform solvent. Their absorption spectra and electronic and structural properties are evaluated and discussed. The theoretical results show that all the dyes exhibit excellent optoelectronic properties. In particular, D5 with indole as the terminal electron donor moiety has potential for use as a sensitizer for nanocrystalline TiO2 solar cells based on its red-shifted absorption spectrum, reduced energy gap, lowest λtotal value, and higher \(\Delta G^{\text{Inject}}\) and \(\Delta G^{\text{Reg}}\) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  2. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  Google Scholar 

  3. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  4. Gonçalves, L.M., de Zea Bermudez, V., Ribeiro, H.A., Mendes, A.M.: Dye-sensitized solar cells: a safe bet for the future. Energy Environ. Sci. 1, 655–667 (2008)

    Article  Google Scholar 

  5. Chen, C.-Y., Wang, M., Li, J.-Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C., Decoppet, J.-D., Tsai, J.-H., Grätzel, C., Wu, C.-G.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009)

    Article  Google Scholar 

  6. Mishra, A., Fischer, M.K.R., Bäuerle, P.: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009)

    Article  Google Scholar 

  7. Kuang, D., Walter, P., Nüesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M.: Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23, 10906–10909 (2007)

    Article  Google Scholar 

  8. Qin, P., Yang, X., Chen, R., Sun, L., Marinado, T., Edvinsson, T., Boschloo, G., Hagfeldt, A.: Influence of π-conjugation units in organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 111, 1853–1860 (2007)

    Article  Google Scholar 

  9. Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., Grätzel, M.: Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242 (2014)

    Article  Google Scholar 

  10. Cai, S., Tian, G., Li, X., Su, J., Tian, H.: Efficient and stable DSSC sensitizers based on substituted dihydroindolo [2, 3-b] carbazole donors with high molar extinction coefficients. J. Mater. Chem. A 1, 11295–11305 (2013)

    Article  Google Scholar 

  11. Koumura, N., Wang, Z.-S., Mori, S., Miyashita, M., Suzuki, E., Hara, K.: Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc. 128, 14256–14257 (2006)

    Article  Google Scholar 

  12. Hwang, S., Lee, J.H., Park, C., Lee, H., Kim, C., Park, C., Lee, M.-H., Lee, W., Park, J., Kim, K.: A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. (46), 4887–4889 (2007)

  13. Liang, M., Chen, J.: Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42, 3453–3488 (2013)

    Article  Google Scholar 

  14. Cai, L., Moehl, T., Moon, S.-J., Decoppet, J.-D., Humphry-Baker, R., Xue, Z., Bin, L., Zakeeruddin, S.M., Grätzel, M.: 4, 9-Dihydro-4, 4, 9, 9-tetrahexyl-s-indaceno [1, 2-b: 5, 6-b′] dithiophene as a π-spacer of donor − π–acceptor dye and its photovoltaic performance with liquid and solid-state dye-sensitized solar cells. Org. Lett. 16, 106–109 (2013)

    Article  Google Scholar 

  15. Liu, J., Yang, X., Islam, A., Numata, Y., Zhang, S., Salim, N.T., Chen, H., Han, L.: Efficient metal-free sensitizers bearing circle chain embracing π-spacers for dye-sensitized solar cells. J. Mater. Chem. A 1, 10889–10897 (2013)

    Article  Google Scholar 

  16. Kim, J.Y., Kim, Y.H., Kim, Y.S.: Indoline dyes with various acceptors for dye-sensitized solar cells. Curr. Appl. Phys. 11, S117–S121 (2011)

    Article  Google Scholar 

  17. Liu, B., Wu, W., Li, X., Li, L., Guo, S., Wei, X., Zhu, W., Liu, Q.: Molecular engineering and theoretical investigation of organic sensitizers based on indoline dyes for quasi-solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 8985–8992 (2011)

    Article  Google Scholar 

  18. Liu, B., Li, W., Wang, B., Li, X., Liu, Q., Naruta, Y., Zhu, W.: Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells: electron injection, impedance and charge recombination. J. Power Sour. 234, 139–146 (2013)

    Article  Google Scholar 

  19. Cho, M.J., Park, S.S., Yang, Y.S., Kim, J.H., Choi, D.H.: Molecular design of donor–acceptor-type cruciform dyes for efficient dyes-sensitized solar cells. Synth. Met. 160, 1754–1760 (2010)

    Article  Google Scholar 

  20. Ding, W.-L., Wang, D.-M., Geng, Z.-Y., Zhao, X.-L., Xu, W.-B.: Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes Pigments 98, 125–135 (2013)

    Article  Google Scholar 

  21. Zhao, Z., Xu, X., Wang, H., Lu, P., Yu, G., Liu, Y.: Zigzag molecules from pyrene-modified carbazole oligomers: synthesis, characterization, and application in OLEDs. J. Org. Chem. 73, 594–602 (2008)

    Article  Google Scholar 

  22. Li, T., Gao, J., Cui, Y., Zhong, C., Ye, Q., Han, L.: Novel D–π–A carbazole sensitizers with 4-phenyl-2-(thiophen-2-yl) thiazole as π-bridge for dye-sensitized solar cells. J. Photochem. Photobiol. A 303, 91–98 (2015)

    Article  Google Scholar 

  23. Liu, D., Fessenden, R.W., Hug, G.L., Kamat, P.V.: Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO2 nanocrystallites with cresyl violet aggregates. J. Phys. Chem. B 101, 2583–2590 (1997)

    Article  Google Scholar 

  24. Narayan, M.R.: Dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  25. Wang, J., Cong, S., Wen, S., Yan, L., Su, Z.: A rational design for dye sensitizer: density functional theory study on the electronic absorption spectra of organoimido-substituted hexamolybdates. J. Phys. Chem. C 117, 2245–2251 (2013)

    Article  Google Scholar 

  26. Wang, J., Li, H., Ma, N.-N., Yan, L.-K., Su, Z.-M.: Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC). Dyes Pigments 99, 440–446 (2013)

    Article  Google Scholar 

  27. Zhang, J., Li, H.-B., Zhang, J.-Z., Wu, Y., Geng, Y., Fu, Q., Su, Z.-M.: A promising anchor group for efficient organic dye sensitized solar cells with iodine-free redox shuttles: a theoretical evaluation. J. Mater. Chem. A 1, 14000–14007 (2013)

    Article  Google Scholar 

  28. Zhang, Z.-L., Zou, L.-Y., Ren, A.-M., Liu, Y.-F., Feng, J.-K., Sun, C.-C.: Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigments 96, 349–363 (2013)

    Article  Google Scholar 

  29. Mahmood, A., Tahir, M.H., Irfan, A., Al-Sehemi, A.G., Al-Assiri, M.S.: Heterocyclic azo dyes for dye sensitized solar cells: a quantum chemical study. Comput. Theor. Chem. 1066, 94–99 (2015)

    Article  Google Scholar 

  30. Sun, L.L., Zhang, T., Wang, J., Li, H., Yan, L.K., Su, Z.M.: Exploring the influence of electron donating/withdrawing groups on hexamolybdate-based derivatives for efficient p-type dye-sensitized solar cells (DSSCs). RSC Adv. 5, 39821–39827 (2015)

    Article  Google Scholar 

  31. Zhang, J., Li, H.-B., Sun, S.-L., Geng, Y., Wu, Y., Su, Z.-M.: Density functional theory characterization and design of high-performance diarylamine–fluorene dyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem. 22, 568–576 (2012)

    Article  Google Scholar 

  32. Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., Lu, W., Pan, D., Wei, Z.: Theoretical study of WS-9-Based organic sensitizers for unusual vis/NIR absorption and highly efficient dye-sensitized solar cells. J. Phys. Chem. C 119, 9782–9790 (2015)

    Article  Google Scholar 

  33. El Assyry, A., Jdaa, R., Benali, B., Addou, M., Zarrouk, A.: Optical and photovoltaic properties of new quinoxalin-2 (1H)-one-based DA organic dyes for efficient dye-sensitized solar cell using DFT. J. Mater. Environ. Sci. 6, 2612–2623 (2015)

    Google Scholar 

  34. Ait Aicha, Y., Bouzzine, S.M., Fahim, Z.M., Zair, T., Bouachrine, M., Hamidi, M.: Quantum chemical investigations study of the effect of electron donor units on the structural, electronic and optoelectronic properties of diarylthienopyrazine analogs. Comput. Theor. Chem. (2014). https://doi.org/10.1016/j.comptc.2014.03.008

    Article  Google Scholar 

  35. Fahim, Z.M.E., Bouzzine, S.M., Ait Aicha, Y., Bouachrine, M., Hamidi, M.: The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study. Res. Chem. Intermed. (2017). https://doi.org/10.1007/s11164-017-3211-1

    Article  Google Scholar 

  36. Gaussian09, R.A.: 1, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson et al., Gaussian. Inc., Wallingford CT (2009)

  37. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  38. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  Google Scholar 

  39. Fahim, Z.M.E., Bouzzine, S.M., Youssef, A.A., Bouachrine, M., Hamidi, M.: Ground state geometries, uv/vis absorption spectra and charge transfer properties of triphenylamine–thiophenes based dyes for DSSCs: a TD-DFT benchmark study. Comput. Theor. Chem. 1125, 39–48 (2018)

    Article  Google Scholar 

  40. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  Google Scholar 

  41. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998)

    Article  Google Scholar 

  42. Cossi, M., Rega, N., Scalmani, G., Barone, V.: Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003)

    Article  Google Scholar 

  43. Frisch, A., Nielsen, A.B., Holder, A.J.: Gaussview user manual, p. 556. Gaussian Inc., Pittsburgh (2000)

    Google Scholar 

  44. Deschenes, L.A., Vanden, D.A.: BoutUniversity of Texas Austin: Origin 6.0: scientific data analysis and graphing software origin lab corporation (formerly Microcal Software, Inc.). www.originlab.com. Commercial price: 595. Academic price: 446, (2000)

  45. Balanay, M.P., Kim, S.-M., Lee, M.-J., Lee, S.-H., Kim, D.-H.: Conformational analysis and electronic properties of 2-cyano-3-(thiophen-2-yl) acrylic acid in sensitizers for dye-sensitized solar cells: a theoretical study. Bull. Korean Chem. Soc. 30, 2077–2082 (2009)

    Article  Google Scholar 

  46. Gianotti, V., Favaro, G., Bonandini, L., Palin, L., Croce, G., Boccaleri, E., Artuso, E., Van Beek, W., Barolo, C., Milanesio, M.: Rationalization of dye uptake on titania slides for dye-sensitized solar cells by a combined chemometric and structural approach. ChemSusChem 7, 3039–3052 (2014)

    Article  Google Scholar 

  47. Bouzzine, S.M., Bouzakraoui, S., Bouachrine, M., Hamidi, M.: Density functional theory (B3LYP/6–31G*) study of oligothiophenes in their aromatic and polaronic states. J. Mol. Struct. Theochem. (2005). https://doi.org/10.1016/j.theochem.2005.04.023

    Article  Google Scholar 

  48. El Mzioui, S., Bouzzine, S.M., Bouachrine, M., Bennan, M.N., Hamidi, M.: Effect of the alkyl chain length incorporated into donor part on the optoelectronic properties of the carbazole based dyes: theoretical study. Orbital (2017). https://doi.org/10.17807/orbital.v9i5.1003

    Article  Google Scholar 

  49. Khan, S.U.-D., Mahmood, A., Rana, U.A., Haider, S.: Utilization of electron-deficient thiadiazole derivatives as π-spacer for the red shifting of absorption maxima of diarylamine–fluorene based dyes. Theor. Chem. Acc. 134, 1596 (2015)

    Article  Google Scholar 

  50. Liu, J., Sun, X., Li, Z., Jin, B., Lai, G., Li, H., Wang, C., Shen, Y., Hua, J.: New D–π–A system dye based on dithienosilole and carbazole: synthesis, photo-electrochemical properties and dye-sensitized solar cell performance. J. Photochem. Photobiol. A 294, 54–61 (2014)

    Article  Google Scholar 

  51. Huang, J.-F., Liu, J.-M., Tan, L.-L., Chen, Y.-F., Shen, Y., Xiao, L.-M., Kuang, D.-B., Su, C.-Y.: Novel carbazole based sensitizers for efficient dye-sensitized solar cells: role of the hexyl chain. Dyes Pigments 114, 18–23 (2015)

    Article  Google Scholar 

  52. Geng, Y., Li, H.-B., Wu, S.-X., Su, Z.-M.: The interplay of intermolecular interactions, packing motifs and electron transport properties in perylene diimide related materials: a theoretical perspective. J. Mater. Chem. 22, 20840–20851 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Volubilis Program (No. Ma/11/248) for the purchase of Gaussian 09 and Mr. Abderrahmane Babni, Assistant Professor, Polydisciplinary Faculty of Errachidia Moulay Ismail University-Meknes, a teacher of English, who helped us to correct grammatical and spelling mistakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Mohamed Bouzzine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mzioui, S., Bouzzine, S.M., Bourass, M. et al. A theoretical investigation of the optoelectronic performance of some new carbazole dyes. J Comput Electron 18, 951–961 (2019). https://doi.org/10.1007/s10825-019-01339-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01339-x

Keywords

Navigation