Skip to main content
Log in

A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Novel derivatives of OD1 with D–A2–π–A1 configuration have been designed. The calculated geometrical parameters and optoelectronic properties are compared with those of the parent triphenylamine-based dye molecule (OD1) comprising a triphenylamine terminal electron-rich group (D), 3,4-ethylene dioxythiophene π-spacer, fluorophenyl electron-withdrawing group (A1), and cyanoacrylic acid anchor group. The designed derivatives differ from OD1 with D–π–A1 configuration in the incorporation of an electron-acceptor group (A2) between the donor group and π-spacer unit, namely benzotriazole (BTZ), benzothiadiazole (BTDZ), or phthalimide (PHI), denoted as ND2-BTZ, ND3-BTDZ, and ND4-PHI, respectively. The effects of the incorporation of each electron-deficient unit on the geometry, absorption spectra, and electrochemical properties are investigated by using density functional theory (DFT) and time-dependent (TD)DFT methods. Additionally, the preferred dye adsorption process on model Ti(OH)4 is investigated. The results for the binding energy, selected bond distances, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and their distribution, energy gaps, and total density of states (TDOS) plots are discussed and analyzed. The intermolecular interaction between two monomers of each dye and iodine is also investigated, and the complexation energy [corrected for the basis set superposition error (BSSE)] is calculated and analyzed. The results reveal that the introduction of the BTDZ and PHI functional groups is more promising for formation of organic dyes with D–A2–π–A1 configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  Google Scholar 

  2. Obotowo, I.N., Obot, I.B., Ekpe, U.J.: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives. J. Mol. Struct. 1122, 80–87 (2016)

    Article  Google Scholar 

  3. Mishra, A., Fischer, M.K.R., Bäuerle, P.: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48(14), 2474–2499 (2009)

    Article  Google Scholar 

  4. Ooyama, Y., Harima, Y.: Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem 13(18), 4032–4080 (2012)

    Article  Google Scholar 

  5. Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16(8), 5848–5860 (2012)

    Article  Google Scholar 

  6. Xia, H.-Q., et al.: Theoretical studies of electronic and optical properties of the triphenylamine-based organic dyes with diketopyrrolopyrrole chromophore. Dyes Pigm. 113, 87–95 (2015)

    Article  Google Scholar 

  7. Yum, J.-H., et al.: Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1(8–9), 699–707 (2008)

    Article  Google Scholar 

  8. Yang, Z., et al.: TDDFT screening auxiliary withdrawing group and design the novel D–A–π–A organic dyes based on indoline dye for highly efficient dye-sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 167, 127–133 (2016)

    Article  Google Scholar 

  9. Zhu, W., et al.: Organic D–A–π–A solar cell sensitizers with improved stability and spectral response. Adv. Funct. Mater. 21(4), 756–763 (2011)

    Article  Google Scholar 

  10. Ding, W.-L., et al.: Density functional theory characterization and verification of high-performance indoline dyes with D-A–π–A architecture for dye-sensitized solar cells. Dyes Pigm. 98(1), 125–135 (2013)

    Article  Google Scholar 

  11. Agarwala, P., Kabra, D.: A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5(4), 1348–1373 (2017)

    Article  Google Scholar 

  12. Eom, Y.K., et al.: Triphenylamine-based organic sensitizers with π-spacer structural engineering for dye-sensitized solar cells: synthesis, theoretical calculations, molecular spectroscopy and structure–property–performance relationships. Dyes Pigm. 136, 496–504 (2017)

    Article  Google Scholar 

  13. Fahim, Z.M.E., et al.: Ground state geometries, UV/Vis absorption spectra and charge transfer properties of triphenylamine–thiophenes based dyes for DSSCs: a TD–DFT benchmark study. Comput. Theor. Chem. 1125, 39–48 (2018)

    Article  Google Scholar 

  14. Liang, M., Chen, J.: Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42(8), 3453–3488 (2013)

    Article  Google Scholar 

  15. Chaitanya, K., Ju, X.-H., Heron, B.M.: Can elongation of the π-system in triarylamine derived sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? A theoretical study. RSC Adv. 5(6), 3978–3998 (2015)

    Article  Google Scholar 

  16. Chen, B.-S., et al.: Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. J. Mater. Chem. 21(6), 1937–1945 (2011)

    Article  Google Scholar 

  17. Wu, Y., Zhu, W.: Organic sensitizers from D–π–A to D-A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42(5), 2039–2058 (2013)

    Article  Google Scholar 

  18. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  Google Scholar 

  19. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)

    Article  Google Scholar 

  20. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120(1), 215–241 (2008)

    Article  Google Scholar 

  21. Ernzerhof, M., Perdew, J.P.: Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 109(9), 3313–3320 (1998)

    Article  Google Scholar 

  22. Martsinovich, N., Troisi, A.: Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ. Sci. 4(11), 4473–4495 (2011)

    Article  Google Scholar 

  23. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102(11), 1995–2001 (1998)

    Article  Google Scholar 

  24. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985)

    Article  Google Scholar 

  25. Boys, S.F., Bernardi, F.: Mol. Phys. 19, 553 (1970)

    Article  Google Scholar 

  26. Chitpakdee, C., et al.: Theoretical studies on electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials for OLEDs. Spectrochim. Acta A Mol. Biomol. Spectrosc. 125, 36–45 (2014)

    Article  Google Scholar 

  27. Wu, Z., et al.: Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 94(12), 2230–2237 (2010)

    Article  Google Scholar 

  28. Scharber, M.C., et al.: Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)

    Article  Google Scholar 

  29. Li, P., et al.: A systematic study of phenoxazine-based organic sensitizers for solar cells. Dyes Pigm. 137, 12–23 (2017)

    Article  Google Scholar 

  30. Fan, W., Tan, D., Deng, W.Q.: Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study. ChemPhysChem 13(8), 2051–2060 (2012)

    Article  Google Scholar 

  31. Zhang, J., et al.: How to design proper π-spacer order of the D–π–A dyes for DSSCs? A density functional response. Dyes Pigm. 95(2), 313–321 (2012)

    Article  Google Scholar 

  32. Zhang, G., et al.: Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ. Sci. 2(1), 92–95 (2009)

    Article  Google Scholar 

  33. Chen, P., et al.: High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett. 9(6), 2487–2492 (2009)

    Article  Google Scholar 

  34. Chi, W.-J., Li, Z.-S.: The theoretical investigation on the 4-(4-phenyl-4-[small alpha]-naphthylbutadieny)-triphenylamine derivatives as hole transporting materials for perovskite-type solar cells. Phys. Chem. Chem. Phys. 17(8), 5991–5998 (2015)

    Article  MathSciNet  Google Scholar 

  35. Reiss, H., Heller, A.: The absolute potential of the standard hydrogen electrode: a new estimate. J. Phys. Chem. 89(20), 4207–4213 (1985)

    Article  Google Scholar 

  36. Li, W., et al.: Theoretical investigation of triphenylamine-based sensitizers with different π-spacers for DSSC. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 1144–1151 (2014)

    Article  Google Scholar 

  37. Hilborn, R.C.: Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50(11), 982–986 (1982)

    Article  Google Scholar 

  38. Kumar, P.S., et al.: Quantum chemistry calculations of 3-phenoxyphthalonitrile dye sensitizer for solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 77(1), 45–50 (2010)

    Article  Google Scholar 

  39. Cai-Rong, Z., et al.: DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J. Mol. Struct. (Thoechem) 899(1–3), 86–93 (2009)

    Article  Google Scholar 

  40. Garza, A.J., et al.: Photochromic and nonlinear optical properties of fulgides: a density functional theory study. Comput. Theor. Chem. 1022, 82–85 (2013)

    Article  Google Scholar 

  41. Dvorak, M., Wei, S.-H., Wu, Z.: Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 110(1), 016402 (2013)

    Article  Google Scholar 

  42. Frisch, M.J.: Gaussian 09 Programmer’s Reference. Gaussian (2009)

  43. Gorelsky, S.I.: Program for Molecular Orbital Analysis (2015)

  44. Gorelsky, S.I., Lever, A.B.P.: Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organomet. Chem. 635, 187–196 (2001)

    Article  Google Scholar 

  45. Dennington, R., Keith, T., Millam, J.: GaussView, S. Mission, Editor. Semichem Inc., KS (2009)

  46. Zhurko, G., Zhurko, D.: Chemcraft Program, Academic version 1.8 (2009)

  47. Hilal, R., et al.: Time dependent—density functional theory characterization of organic dyes for dye-sensitized solar cells. Mol. Simul. 43, 1523–1531 (2017)

    Article  Google Scholar 

  48. Prajongtat, P., et al.: Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications. J. Mol. Graph. Model. 76, 551–561 (2017)

    Article  Google Scholar 

  49. Lu, X., et al.: Can polypyridyl Cu(I)-based complexes provide promising sensitizers for dye-sensitized solar cells? A theoretical insight into Cu(I) versus Ru(II) sensitizers. J. Phys. Chem. C 115(9), 3753–3761 (2011)

    Article  Google Scholar 

  50. Mandal, S., Rao, S., Ramanujam, K.: Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD–DFT studies. Ionics 23, 3545–3554 (2017)

    Article  Google Scholar 

  51. Soto-Rojo, R., Baldenebro-Lopez, J., Glossman-Mitnik, D.: Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Phys. Chem. Chem. Phys. 17(21), 14122–14129 (2015)

    Article  Google Scholar 

  52. Guo, Y., et al.: Theoretical design of push-pull porphyrin dyes with π-bridge modification for dye-sensitized solar cells. J. Photochem. Photobiol. A 332, 232–240 (2017)

    Article  Google Scholar 

  53. Wazzan, N., El-Shishtawy, R.M., Irfan, A.: DFT and TD–DFT calculations of the electronic structures and photophysical properties of newly designed pyrene-core arylamine derivatives as hole-transporting materials for perovskite solar cells. Theor. Chem. Acc. 137(1), 9 (2017)

    Article  Google Scholar 

  54. Fitri, A., et al.: Theoretical investigation of new thiazolothiazole-based D–π–A organic dyes for efficient dye-sensitized solar cell. Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 646–654 (2014)

    Article  Google Scholar 

  55. Li, H.-B., et al.: Theoretical study and design of triphenylamine-malononitrile-based p-type organic dyes with different π-linkers for dyes-sensitized solar cells. Dyes Pigm. 108, 106–114 (2014)

    Article  Google Scholar 

  56. Fu, J.-J., et al.: Theoretical investigation of novel phenothiazine-based D–π–A conjugated organic dyes as dye-sensitizer in dye-sensitized solar cells. Comput. Theor. Chem. 1045, 145–153 (2014)

    Article  Google Scholar 

  57. Mehmood, U., et al.: Theoretical study of benzene/thiophene based photosensitizers for dye sensitized solar cells (DSSCs). Dyes Pigm. 118, 152–158 (2015)

    Article  Google Scholar 

  58. Hosseinzadeh, E., Hadipour, N.L., Parsafar, G.: A computational investigation on the influence of different π spacer groups in the bithiazole-based organic dye sensitizers on the short-circuit photocurrent densities of dye-sensitized solar cells. J. Photochem. Photobiol. A 333, 70–78 (2017)

    Article  Google Scholar 

  59. Fan, W., Deng, W.Q.: Incorporation of thiadiazole derivatives as π-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1(2), 152–170 (2013)

    Article  Google Scholar 

  60. Huang, Z.-S., et al.: Dithienopyrrolobenzotriazole-based organic dyes with high molar extinction coefficient for efficient dye-sensitized solar cells. Dyes Pigm. 125, 229–240 (2016)

    Article  Google Scholar 

  61. Garza, A.J., et al.: Nonlinear optical properties of DPO and DMPO: a theoretical and computational study. Theor. Chem. Acc. 132(9), 1384 (2013)

    Article  Google Scholar 

  62. Hara, K., et al.: Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003)

    Article  Google Scholar 

  63. Nazeeruddin, M.K., et al.: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107(34), 8981–8987 (2003)

    Article  Google Scholar 

  64. Namuangruk, S., et al.: Coumarin-based donor–π–acceptor organic dyes for a dye-sensitized solar cell: photophysical properties and electron injection mechanism. Theor. Chem. Acc. 135(1), 14 (2015)

    Article  Google Scholar 

  65. Wang, Z., et al.: Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synth. Met. 114(2), 201–207 (2000)

    Article  Google Scholar 

  66. Xu, W., et al.: New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 112(3), 874–880 (2008)

    Article  Google Scholar 

  67. Zhang, J., et al.: Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem. 22(2), 568–576 (2012)

    Article  Google Scholar 

  68. Yella, A., et al.: Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chem. Mater. 25(13), 2733–2739 (2013)

    Article  Google Scholar 

  69. Wang, X., et al.: A benzothiazole-cyclopentadithiophene bridged D–A–π–A sensitizer with enhanced light absorption for high efficiency dye-sensitized solar cells. Chem. Commun. 50(30), 3965–3968 (2014)

    Article  Google Scholar 

  70. Srinivas, K., et al.: Novel 1,3,4-oxadiazole derivatives as efficient sensitizers for dye-sensitized solar cells: a combined experimental and computational study. Synth. Met. 161(15), 1671–1681 (2011)

    Article  Google Scholar 

  71. He, L.-J., et al.: Fine-tuning π-spacer for high efficiency performance DSSC: a theoretical exploration with D–π–A based organic dye. Dyes Pigm. 141, 251–261 (2017)

    Article  Google Scholar 

  72. Green, A.N.M., et al.: Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films. J. Phys. Chem. B 109(1), 142–150 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges King Abdulaziz University’s High-Performance Computing Center (Aziz Supercomputer) (http://hpc.kau.edu.sa) for assisting with the calculations presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuha A. Wazzan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazzan, N.A. A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications. J Comput Electron 18, 375–395 (2019). https://doi.org/10.1007/s10825-019-01308-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01308-4

Keywords

Navigation