Skip to main content
Log in

Series and parallel resistance effects on the C–V and G–V characteristics of \(\mathrm{Al}/\mathrm{SiO}_{2}\)/Si structure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2017

Abstract

This paper investigates the electrical behavior of the C–V and G–V characteristics of \(\mathrm{Al}/\mathrm{SiO}_{2}/\mathrm{Si}\) structure. The modeling of capacitance and conductance has been developed from complex admittance treatment applied to the proposed equivalent circuit. Poisson transport equations have been used to determine the charge density, surface potential, total capacitance, and flatband and threshold voltages as a function of the gate voltage, frequency (\(\omega )\), and series \(({R}_{\mathrm{s}})\) and parallel \(({R}_{\mathrm{p}})\) resistances. Results showed a frequency dispersion of C–V and G–V curves in both accumulation and inversion regimes. With increasing frequency, the accumulation capacitance is decreased, whereas the conductance is strongly increased. The shape, dispersion, and degradation of C–V and G–V characteristics are more influenced when parallel and series resistances \((\mathrm{R}_{\mathrm{s}}\), \(\mathrm{R}_{\mathrm{p}})\) are dependent to substrate doping density. The variation of \(\mathrm{R}_{\mathrm{s}}\) and \(\mathrm{R}_{\mathrm{p}}\) values led to a reduction of flatband voltage from −1.40 to −1.26 V and increase of the threshold voltage negatively from −0.28 to −0.74 V. A good agreement has been observed between simulated and measured C–V and G–V curves obtained at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldberger, J., Hochbaum, I.A., Fan, R., Yang, P.: Silicon Vertically Integrated Nanowire Field Effect Transistors. Nano. Lett. 6, 973 (2006)

    Article  Google Scholar 

  2. Jianjun, C., Shuming, C., Bin, L., Biwei, L., Zheng, L., Zheqian, T.: Hot carrier effects of SOI NMOS. J. Semicond. 31, 74006 (2010)

    Article  Google Scholar 

  3. Godoy, A., López-Villanueva, J.A., Jiménez-Tejada, J.A., Palma, A., Gámiz, F.: A simple subthreshold swing model for short channel MOSFETs. Solid. State. Electron. 45, 391 (2001)

    Article  Google Scholar 

  4. Schroder, D.K.: Semiconductor material and device characterization, 3rd edn. John Wiley & Sons, New York (2006)

    Google Scholar 

  5. Bentarzi, H.: Transport in metal-oxide-semiconductor structures. Springer-Verlag, Berlin Heidelberg (2011)

    Book  Google Scholar 

  6. Xiao, H., Huang, S.: Frequency and voltage dependency of interface states and series resistance in Al/SiO\(_{2}\)/p-Si MOS structure. Materials science in semiconductor processing 13, 395 (2010)

    Article  Google Scholar 

  7. Kahraman, A., Yilmaz, E., Kaya, S., Aktag, A.: Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO\(_{2}\) MOS capacitors. J. Mater. Sci. Mater. Electron. 26, 8277 (2015)

    Article  Google Scholar 

  8. Baran, H.M., Tataroglu, A.: Determination of interface states and their time constant for Au/SnO\(_{2}\)/n-Si (MOS) capacitors using admittance measurements. Chin. Phys. B. 22, 047303 (2013)

    Article  Google Scholar 

  9. Barış, B.: Analysis of device parameters for Au/tin oxide/n-Si (1 0 0) metal-oxide-semiconductor (MOS) diodes. Phys. B. 438, 65 (2014)

    Article  Google Scholar 

  10. Karatas, Ş., Altındal, Ş.: Analysis of I-V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Mater. Sci. Eng. B. 122, 133 (2005)

    Article  Google Scholar 

  11. Karatas, Ş.: Altındal Ş, akar M. C,: Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures. Phys. B. 357, 386 (2005)

    Article  Google Scholar 

  12. Yakuphanoglu, F.: Electronic and interface state density properties of Cu/n-Si MIS-type diode. Phys. B. 394, 23 (2007)

    Article  Google Scholar 

  13. Tataroğlu, A., Altindal, Ş., Bülbül, M.M.: Temperature and frequency dependent electrical and dielectric properties of Al/SiO\(_{2}\)/p-Si (MOS) structure. Microelectron. Eng. 81, 140 (2005)

    Article  Google Scholar 

  14. Bülbül, M.M., Zeyrek, S.: Frequency dependent capacitance and conductance-voltage characteristics of Al/Si\(_{3}\) N\(_{4}\)/p-Si (100) MIS diodes. Microelectron. Eng. 83, 2522 (2006)

    Article  Google Scholar 

  15. Chattopadhyay, P., Raychaudhuri, B.: Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid. State. Electron. 36(2), 605 (1993)

    Article  Google Scholar 

  16. Sze, S.M.: Phys. Semicond. Wiley- Inter science, New York (1969)

    Google Scholar 

  17. Luna-Lopez, J.A., Aceves-Mijares, M., Malik, O., Glanzer, R.: Modelling the C-V characteristics of MOS capacitor on high resistivity silicon substrate for PIN photo-detector applications. INAOE REVISTA Mexicana de Fisica s, Puebla. 52, 45 (2005)

  18. Terman, L.M.: An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid. State. Electron. 5, 285 (1962)

    Article  Google Scholar 

  19. Luna-López, J.A., Aceves-Mijares, M., Malik, O.: Caracterización de substratos de silicio de alta y baja resistividad mediante la estructura Al/SRO/Si y comparación con técnicas utilizando estructuras MOS. Sociedad Mexicana de Ciencia de Superficies y de Vacío 17, 1 (2004)

    Google Scholar 

  20. Fernández-Martínez, P., Palomo, F.R., Hidalgo, S., Fleta, C., Campabadal, F., Flores, D.: Analysis of displacement damage effects on MOS capacitors. Nucl. Instr. Meth. Phys. Res A. 730, 91 (2013)

    Article  Google Scholar 

  21. Rong, B., Nanver, L.K., Burghartz, J.N., Jansman, A.B.M., Evans, A.G.R., Rejaeia, B.S.: C-V Characterization of MOS Capacitors on High Resistivity Silicon Substrate. in 33rd Conference on European Solid-State Device Research, IEEE, pp. 489–492. doi:10.1109/ESSDERC.1256920 (2003)

  22. Chen, F., Hoilien, N.P., Campbell, S.A.: A new method for extracting EOT for leaky insulators. Microelectron. Eng. 72, 160 (2004)

    Article  Google Scholar 

  23. Rejaiba, O., Ben Amar, M., Matoussi, A.: Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices. Eur. Phys. J. Plus. 130, 80, 1. (2015)

  24. Ullah, S.S., Robinson, M., Hoey, J., Driver, M.S., Caruso, A., Schulz, D.L.: Work function characterization of solution-processed cobalt silicide. Semicond. Sci. Technol. 27, 065012(5p)(2012)

  25. Henson, W.K, Ahmed, K.Z., Vogel, E.M., Hauser, J.R., Wortman, J.J., Venables, R.D., Xu, M., Venables, D.: Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors. IEEE. Electron. Device. Lett. doi:10.1109/55.753759. 20,179(1999)

  26. Sah, C.T., Tole, A.B., Pierret, R.F.: Error analysis of surface state density determination using the MOS capacitance method. Solid. State. Electron. 12, 689 (1969)

    Article  Google Scholar 

  27. Srivastava, A.K., Fretwurst, E., Klanner, R.: Simulation of MOS Capacitor for C-V\(_{g}\) Characterization, Internal note (within AGIPD collaboration)

  28. Srivastava, A.K., Fretwurst, E., Klanner, R., Perrey, H.: Numerical Modelling of the Frequency Behaviour of Irradiated MOS Test Structure Internal note (within AGIPD collaboration). (http://hasylab.desy.de/instrumentation/detectors/publications___reports)

  29. Mahajan, A.M., Khairnar, A.G., Thibeaul, B.J.: Pt-Ti/ALD-Al2O3/p-Si MOS capacitors for future ULSI technology. J. Nano. Electron. Phys. 3, 647 (2011)

    Google Scholar 

  30. Birkan Selçuk, A., Tuğluoğlu, N., Karadeniz, S., Bilge Ocak, S.: Analysis of frequency-dependent series resistance and interface states of In/SiO2/p-Si (MIS) structures. Phys. B. 400, 149 (2007)

    Article  Google Scholar 

  31. Korucu, D., Turut, A., Turan, R., Altindal, Ş.: On the profile of frequency dependent interface states and series resistance in Au/p-InP SBDs prepared with photolithography technique. Sci. China Phys. Mechan. Astron. 55, 1604 (2012)

    Article  Google Scholar 

  32. Tataroğlu, A., Altindal, Ş.: Characterization of current-voltage (I-V) and capacitance-voltage-frequency (C-V-f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 582 (2006)

    Article  Google Scholar 

  33. Raychaudhuri, B., Chattopadhyay, P.: Effect of energy distribution of interface states on the capacitance and conductance of Schottky barrier and MIS tunnel contacts. Phys. Stat. Sol. (a). 141, 7 (1994)

    Article  Google Scholar 

  34. Parlaktürk, F., Altındal, Ş., Tataroğlu, A., Parlak, M., Agasiev, A.: On the profile of frequency dependent series resistance and surface states in Au/Bi\(_{4}\)Ti\(_{3}\)O\(_{12}\)/SiO\(_{2}\)/n-Si (MFIS) structures. Microelectron. Eng. 85, 81 (2008)

    Article  Google Scholar 

  35. Tataroğlu, A., Altindal, Ş.: Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO\(_{2}\)/n-Si (MIS) structures. Microelectron. Eng. 85, 1866 (2008)

    Article  Google Scholar 

  36. Konofaos, N., Evangelou, E,K., Aslanoglou, X., Kokkoris, M., Vlastou, R.: Dielectric properties of CVD grown SiON thin films on Si for MOS microelectronic devices. Semicond. Sci. Technol. 19, 50 (2004)

    Article  Google Scholar 

  37. Kwa, K.S.K., Chattopadhyay, S., Jankovic, N.D., Olsen, S.H., Driscolland, L.S.: O’Neill. A.G.: A model for capacitance reconstruction from measured lossy MOS capacitance-voltage characteristics. Semicond. Sci. Technol. 18, 82 (2003)

    Article  Google Scholar 

  38. Hofstein, S.R., Warfield, G.: Physical limitations on the frequency response of a semiconductor surface inversion layer. Solid. State. Electron. 8, 321 (1965)

    Article  Google Scholar 

  39. Nicollian, E.H., Brews, J.R.: MOS Physics and Technology. Willey Inter science Publication, USA (1982)

    Google Scholar 

  40. Mathieu, H.: Physique de semi-conducteurs et des composantes électroniques. Masson S.A, Paris (1998)

  41. Yıldız, D.E., Dökme, İ.: Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO\(_{2}\)/p-Si metal-insulator-semiconductor Schottky diodes. J. Appl. Phys. 110, 014507(5) (2011)

    Google Scholar 

  42. Arsel, İ.: On the profile of frequency dependent series resistance and interface states in Al/TiO\(_{2}\)/p-Si (MIS) Structures. Batman University. J. Life. Sci. 2, 29 (2012)

    Google Scholar 

  43. Therrien, R., Lucovsky, G., Davis, R.: Charge redistribution at GaN-G2O3 interfaces: a microscopic mechanism for low defect density interfaces in remote-plasma-processed MOS devices prepared on polar GaN faces. Appl. Surf. Sci. 166, 513 (2000)

    Article  Google Scholar 

  44. Abdullah, K.A., Abdullah, M.J., Yam, F.K., Hassan, Z.: Electrical characteristics of GaN-based metal-oxide-semiconductor (MOS) structures. Microelectron. Eng. 81, 201 (2005)

    Article  Google Scholar 

  45. Casey Jr., H.C., Fountain, G.G., Alley, R.G., Keller, B.P., Denbaars, S.P.: Low interface trap density for remote plasma deposited SiO\(_{2}\) on n-type GaN. Appl. Phys. Lett. 68, 1850 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Rejaiba.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10825-017-0970-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejaiba, O., Braña, A.F. & Matoussi, A. Series and parallel resistance effects on the C–V and G–V characteristics of \(\mathrm{Al}/\mathrm{SiO}_{2}\)/Si structure. J Comput Electron 15, 831–838 (2016). https://doi.org/10.1007/s10825-016-0844-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0844-z

Keywords

Navigation