Skip to main content
Log in

Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Optoelectronic two dimensional technology computer aided design simulation of unconstrained four terminal hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) tandem solar cells have been carried out. Tandem solar cell approach is one of the promising approaches to achieve high efficiency solar cell by reducing lattice thermalization loss, but needs extensive optimization as the efficiency depends on a number of parameters. The optoelectronic properties of various materials involved have been taken into consideration and a range of parameters such as top anti reflection coating (ARC) thickness, bottom ARC thickness, a-Si:H solar cell thickness, optical connecting layer thickness, a-Si:H solar cell doping, crystalline silicon solar cells doping etc. have been optimized. The optimization resulted in a simulated efficiency of 19.29 % for an untextured planar solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 44). Prog. Photovolt. Res. Appl. 22(7), 701–710 (2014). doi:10.1002/pip.2525

  2. Green, M.A.: The path to 25 % silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009). doi:10.1002/pip.892

  3. Atlas User’s Manual: Device Simulation Software. Silvaco Int., Santa Clara, CA (2008)

  4. Shaw, J.G., Hack, M.: An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64(9), 4562 (1988). doi:10.1063/1.341258

    Article  Google Scholar 

  5. Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Meguro, T., Matsuda, T., Kondo, M., Sasaki, T., Tawada, Y.: A high efficiency thin film silicon solar cell and module. Sol. Energy 77(6), 939–949 (2004). doi:10.1016/j.solener.2004.08.028

    Article  Google Scholar 

  6. Tokyo Electron Ltd.: New record-breaking PV module efficiency has been achieved. http://www.mechatronics.tel.com/en/media/press-releases/details/news/2014/07/09/new-record-breaking-pv-module-efficiency-has-been-achieved/ (2014). Accessed 7 Nov 2015

  7. Perez-Wurfl, I., Ma, L., Lin, D., Hao, X., Green, M.A., Conibeer, G.: Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Sol. Energy Mater. Sol. Cells 100, 65–68 (2012). doi:10.1016/j.solmat.2011.02.029

    Article  Google Scholar 

  8. Noufi, R., Young, D.L., Coutts, T.J., Gessert, T., Ward, J.S., Duda, A., Wu, X., Romero, M., Dhere, R., Abu Shama, J.: Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 11, pp. 12–14 , 18 May 2003

  9. Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Physica E 14(1–2), 96–100 (2002). doi:10.1016/S1386-9477(02)00364-8

    Article  Google Scholar 

  10. Matsumoto, Y., Miyagi, K., Takakura, H., Okamoto, H., Hamakawa, Y.: a-Si/poly-Si two- and four-terminal tandem type solar cells. In: Photovoltaic Specialists Conference, 1990, Conference Record of the Twenty First IEEE, vol.1422, pp. 1420–1425, 21–25 May 1990

  11. Alì, G., Butera, F., Rotundo, N.: Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. J. Comput. Electron. 13(1), 323–328 (2014). doi:10.1007/s10825-013-0533-0

    Article  Google Scholar 

  12. Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, London (2003)

    Google Scholar 

  13. Guha, S., Yang, J.: High-efficiency amorphous silicon alloy based solar cells and modules. National Renewable Energy Laboratory Report (2005). www.nrel.gov/docs/fy06osti/38728.pdf. Accessed 7 Nov 2015

  14. Murayama, K.: Hopping and radiative recombination at localized band tail states in hydro-genated amorphous silicon. Phys. Status Solidi C 8(1), 198–204 (2011). doi:10.1002/pssc.201000558

    Article  Google Scholar 

  15. Nguyen, H.T., Baker-Finch, S.C., Macdonald, D.: Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence. Appl. Phys. Lett. 104(11), 112105 (2014). doi:10.1063/1.4869295

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank The Director, CSIR-CEERI, Pilani for his motivation and support. This work has been funded under a CSIR network project. The authors would like to acknowledge financial support from CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Taube Navaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navaraj, W.T., Yadav, B.K. & Kumar, A. Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell. J Comput Electron 15, 287–294 (2016). https://doi.org/10.1007/s10825-015-0767-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0767-0

Keywords

Navigation