Skip to main content
Log in

Quasi-bound levels, transmission and resonant tunneling in heterostructures with double and multi rectangular, trapezoidal, triangular barriers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 13 May 2014

Abstract

In this work quasi-bound level energies, energy dependence of the transmission coefficients and negative differential resistance properties are studied in double and multi-barrier structures. Various barrier types such as rectangular, trapezoidal and triangular are chosen. In order to compare calculation results, maximum of the barrier height and base of the barrier width are kept constant. Only changes due to barrier shape and well region width are investigated. Mini-band formation in multi-barrier structures with different barrier shapes are compared for several well widths in energy scale. In addition, properties of the resonant tunneling peak shapes, I–V characteristics, peak-to-valley current ratios in negative differential resistance regions are compared for rectangular, trapezoidal, triangular barrier types for both double and multi-barrier structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)

    Article  Google Scholar 

  2. Chang, L.L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593–595 (1974)

    Article  Google Scholar 

  3. Tsuchiya, M., Sakaki, H.: Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures. Appl. Phys. Lett. 49, 88 (1986)

    Google Scholar 

  4. Ohmukai, M.: Triangular double barrier resonant tunneling. Mater. Sci. Eng. 116, 87–90 (2005)

    Article  Google Scholar 

  5. Kroemer, H.: Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001)

    Article  Google Scholar 

  6. Wang, H., Xu, H., Zhang, Y.: A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes. Phys. Lett. A 355, 481–488 (2006)

    Article  Google Scholar 

  7. Harrison, P.: Quantum Wells, Wires, and Dots : Theoretical and Computational Physics of Semiconductor Nanostructures, pp. 62–63. Wiley, Hoboken (2005)

    Book  Google Scholar 

  8. Li, W.: Generalized free wave transfer matrix method for solving the Schrödinger equation with an arbitrary potential profile. IEEE J. Quantum Electron. 46, 970–975 (2010)

    Google Scholar 

  9. Vatannia, S., Gildenblat, G.: Airy’s functions implementation of the transfer-matrix method for resonant tunneling in variably spaced finite superlattices. IEEE J. Quantum Electron. 32, 1093–1105 (1996)

    Article  Google Scholar 

  10. Jonsson, B., Eng, S.: Solving the schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J. Quantum Electron. 26, 2025–2035 (1990)

    Article  Google Scholar 

  11. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007)

    Article  Google Scholar 

  12. Jones, E., Oliphant, T., Peterson, P., et al.: Open source scientific tools for python, Scipy (2001)

  13. Singh, J.: Physics of Semiconductors and Their Heterostructures, pp. 184–185. McGraw-Hill, New York (1993)

  14. Chamard, V., Schülli, T., Sztucki, M., Metzger, T.H., Sarigiannidou, E., Rouvière, J.-L., Tolan, M., Adelmann, C., Daudin, B.: Strain distribution in nitride quantum dot multilayers. Phys. Rev. B 69, 125327 (2004)

    Google Scholar 

  15. Steiger, S., Povolotskyi, M., Park, H.H., Kubis, T., Klimeck, G.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotechnol. 10, 1464–1474 (2011)

    Article  Google Scholar 

  16. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  17. Ferry, D.K., Goodnick, S.M., Bird, J.P.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  18. Steiger, S.: NEMO5 User Manual. Purdue University, Network for Computational Nanotechnology Purdue University (2012)

  19. Ohmukai, M.: The gradient of the barriers affects the resonant energy. Mod. Phys. Lett. B 17, 383–386 (2003)

    Article  Google Scholar 

  20. Bowen, R.C., Klimeck, G., Lake, R.K., Frensley, W.R., Moise, T.: Quantitative simulation of a resonant tunneling diode. J. Appl. Phys. 81, 3207 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nutku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nutku, F. Quasi-bound levels, transmission and resonant tunneling in heterostructures with double and multi rectangular, trapezoidal, triangular barriers. J Comput Electron 13, 456–465 (2014). https://doi.org/10.1007/s10825-014-0556-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0556-1

Keywords

Navigation