Skip to main content
Log in

Efficient and realistic device modeling from atomic detail to the nanoscale

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (2012). http://www.itrs.net

  2. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7(4), 242–246 (2012)

    Article  Google Scholar 

  3. Steiger, S., Povolotskyi, M., Park, H.H., Kubis, T., Klimeck, G.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotechnol. 10(6), 1464–1474 (2011). 844JA Cited

    Article  Google Scholar 

  4. Sellier, J., Fonseca, J., Kubis, T.C., Povolotskyi, M., He, Y., Ilatikhameneh, H., Jiang, Z., Kim, S., Mejia, D., Sengupta, P., Tan, Y.: Nemo5, a parallel, multiscale, multiphysics nanoelectronics modeling tool. In: SISPAD (2012)

    Google Scholar 

  5. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  6. Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium Green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011)

    Article  Google Scholar 

  7. Zeng, L., He, Y., Povolotskyi, M., Liu, X., Klimeck, G., Kubis, T.: Low rank approximation method for efficient green’s function calculation of dissipative quantum transport. J. Appl. Phys. 113(21), 213707–8 (2013)

    Article  Google Scholar 

  8. Mamaluy, D., Sabathil, M., Vogl, P.: Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93(8), 4628–4633 (2003)

    Article  Google Scholar 

  9. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  10. Ting, D.Z.Y., Yu, E.T., McGill, T.C.: Multiband treatment of quantum transport in interband tunnel devices. Phys. Rev. B 45(7), 3583–3592 (1992)

    Article  Google Scholar 

  11. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: Petsc web page (2013). http://www.mcs.anl.gov/petsc

  12. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger–Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880–7884 (1997)

    Article  Google Scholar 

  13. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Article  Google Scholar 

  14. Cowell, W.R.: Sources and Development of Mathematical Software. In: Cowell, W.R. (ed.): Prentice-Hall Series in Computational Mathematics. Prentice Hall, Englewood Cliffs (1984). 83027012 Wayne R. Cowell (ed.) and index

    Google Scholar 

  15. Antoniadis, D.A., Aberg, I., NiChleirigh, C., Nayfeh, O.M., Khakifirooz, A., Hoyt, J.L.: Continuous mosfet performance increase with device scaling: the role of strain and channel material innovations. IBM J. Res. Dev. 50(4/5), 363–376 (2006)

    Article  Google Scholar 

  16. Steiger, S., Salmani-Jelodar, M., Areshkin, D., Paul, A., Kubis, T.C., Povolotskyi, M., Park, H.-H., Klimeck, G.: Enhanced valence force field model for the lattice properties of gallium arsenide. Phys. Rev. B, Solid State 84(15), 155204 (2011)

    Article  Google Scholar 

  17. Paul, A., Luisier, M., Klimeck, G.: Modified valence force field approach for phonon dispersion: from zinc-blende bulk to nanowires. J. Comput. Electron. 9(3–4), 160–172 (2010)

    Article  Google Scholar 

  18. Sui, Z., Herman, I.P.: Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B, Solid State 48(24), 17938–17953 (1993)

    Article  Google Scholar 

  19. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008)

    Article  Google Scholar 

  20. Theis, T.N., Solomon, P.M.: It’s time to reinvent the transistor! Science 327(5973), 1600–1601 (2010)

    Article  Google Scholar 

  21. Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J.: The piezoelectronic transistor: a nanoactuator-based post-cmos digital switch with high speed and low power. Mater. Res. Soc. Bull. 37(11), 1071–1076 (2012)

    Article  Google Scholar 

  22. Newns, D.M., Elmegreen, B.G., Liu, X.-H., Martyna, G.J.: High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24(27), 3672–3677 (2012)

    Article  Google Scholar 

  23. Mott, N.F.: Metal-insulator transition. Rev. Mod. Phys. 40(4), 677–683 (1968)

    Article  Google Scholar 

  24. Tan, Y., Povolotskyi, M., Kubis, T.C., He, Y., Jiang, Z., Klimeck, G., Boykin, T.: Parameterization of tight-binding models from density functional theory calculations. J. Comput. Electron. 12, 56 (2013)

    Article  Google Scholar 

  25. Jiang, Z., Kuroda, M.A., Tan, Y., Newns, D.M., Povolotskyi, M., Boykin, T.B., Kubis, T., Klimeck, G., Martyna, G.J.: Electron transport in nano-scaled piezoelectronic devices. Appl. Phys. Lett. 102(19), 193501–3 (2013)

    Article  Google Scholar 

  26. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  27. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  28. Podolskiy, A.V., Vogl, P.: Compact expression for the angular dependence of tight-binding Hamiltonian matrix elements. Phys. Rev. B 69, 233101 (2004)

    Article  Google Scholar 

  29. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  30. Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007)

    Article  Google Scholar 

  31. Sengupta, P., Kubis, T., Tan, Y., Povolotskyi, M., Gerhard, K.: Design principles for HgTe based topological insulator devices. J. Appl. Phys. 114(4), 043702 (2013)

    Article  Google Scholar 

  32. Lee, S., von Allmen, P.: Tight-binding modeling of thermoelectric properties of bismuth telluride. Appl. Phys. Lett. 88, 022107 (2006)

    Article  Google Scholar 

  33. Souma, S., Kosaka, K., Sato, T., Komatsu, M., Takayama, A., Takahashi, T., Kriener, M., Segawa, K., Ando, Y.: Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator. Phys. Rev. Lett. 106(21), 216803 (2011)

    Article  Google Scholar 

  34. Till, A., Vogl, P.: Full-band envelope-function approach for type-ii broken-gap superlattices. Phys. Rev. B, Solid State 80(3), 035304 (2009)

    Article  Google Scholar 

  35. Boykin, T.B., Kharche, N., Klimeck, G., Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys. Condens. Matter 19, 036203 (2007)

    Article  Google Scholar 

  36. Popescu, V., Zunger, A.: Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85(8), 085201 (2012

    Article  Google Scholar 

  37. Boykin, T.B., Kharche, N., Klimeck, G.: Non-primitive rectangular cells for tight-binding electronic structure calculations. Physica E, Low-Dimens. Syst. Nanostruct. 41(3), 490–494 (2009)

    Article  Google Scholar 

  38. Klimeck, G., Shahid Ahmed, S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., et al.: Atomistic simulation of realistically sized nanodevices using nemo 3-d—Part i: models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079–2089 (2007)

    Article  Google Scholar 

  39. Klimeck, G., Ahmed, S.S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using nemo 3-d—Part ii: applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007)

    Article  Google Scholar 

  40. Aravind, P.K.: On visualizing crystal lattice planes. Am. J. Phys. 74, 794 (2006)

    Article  Google Scholar 

  41. Ajoy, A.: Complex bandstructure of direct bandgap III–V semiconductors: application to tunneling. In: 16th International Workshop on Physics of Semiconductor Devices, p. 854923. International Society for Optics and Photonics, Bellingham (2012)

    Chapter  Google Scholar 

  42. Paul, A., Mehrotra, S., Luisier, M., Klimeck, G.: Performance prediction of ultrascaled SiGe/Si core/shell electron and hole nanowire mosfets. IEEE Electron Device Lett. 31(4), 278–280 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF PetaApps grant number OCI-0749140, NSF grant EEC-0228390 that funds the Network for Computational Nanotechnology, and SRC NEMO5 development: Semiconductor Research Corporation (SRC) (Task 2141), and Intel Corp.

With kind permission from Springer Science+Business Media: Journal of Computational Electronics, Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping, volume 12, issue 1, 2013, pp. 56–60, Yaohua Tan, Michael Povolotskyi, Tillmann Kubis, Yu He, Zhengping Jiang, Gerhard Klimeck, and Timothy B. Boykin, Figs. 6 and 7, ©Springer Science+Business Media New York 2013 doi:10.1007/s10825-013-0436-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, J.E., Kubis, T., Povolotskyi, M. et al. Efficient and realistic device modeling from atomic detail to the nanoscale. J Comput Electron 12, 592–600 (2013). https://doi.org/10.1007/s10825-013-0509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0509-0

Keywords

Navigation