Skip to main content
Log in

Analog and RF performance investigation of cylindrical surrounding-gate MOSFET with an analytical pseudo-2D model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We report a systematic, quantitative investigation of analog and RF performance of cylindrical surrounding-gate (SRG) silicon MOSFET. To derive the model, a pseudo-two-dimensional (2-D) approach applying Gauss’s law in the channel region is extended for the cylindrical SRG MOSFET. Based on surface potential approach, expressions of drain current and differential capacitances are obtained analytically. Analog/RF figures of merit of SRG MOSFET are studied, including transconductance efficiency g m/I d, intrinsic gain, output resistance, cutoff frequency f T, maximum oscillation frequency f max and gain bandwidth product GBW. The trends related to their variations along the downscaling of dimension are provided. In order to validate our model, the modeled predictions have been extensively compared with the simulated characteristics obtained from the ATLAS device simulator and a nice agreement is observed with a wide range of geometrical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ITRS.: International Technology Roadmap for Semiconductors. http://www.itrs.net (2009). Accessed 26 May 2009

  2. Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs. IEEE Electron Device Lett. 18(2), 74–76 (1997)

    Article  Google Scholar 

  3. Dupré, C., Ernst, T., Arvet, C., Aussenac, F., Deleonibus, S., Ghibaudo, G.: Stacked nanowires ΦFET with independent gates:novel device for ultra-dense low power applications. In: Proc. IEEE Int. SOI Conf. 2007, pp. 95–96. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  4. Weber, O., Faynot, O., Andrieu, F., Buj-Dufournet, C., Allain, F., Scheiblin, P., Foucher, J., Daval, N., Lafond, D., Tosti, L., Brevard, L., Rozeau, O., Fenouillet-Beranger, C., Marin, M., Boeuf, F., Delprat, D., Bourdelle, K., Nguyen, B.-Y., Deleonibus, S.: High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding. In: Proc. Electron Devices Meeting IEDM’08, pp. 1–4. IEEE Press, New York (2008)

    Google Scholar 

  5. Oh, S.H., Monore, D., Hergenrother, J.M.: Analytical description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 21(9), 445–447 (2000)

    Article  Google Scholar 

  6. Yang, F.L., et al.: 5 nm-Gate nanowire FinFET. Proc. VLSI Symp. Tech. Dig. 5, 196–197 (2004)

    Article  Google Scholar 

  7. Paul, B.C., Raychowdhury, A., Roy, K.: Device optimization for digital subthreshold logic operation. IEEE Trans. Electron Devices 52(2), 237–247 (2005)

    Article  Google Scholar 

  8. Vittoz, E., Fellrath, J.: CMOS analog integrated circuits based on weak inversion operation. IEEE J. Solid-State Circuits SC-12(1), 224–231 (1977)

    Article  Google Scholar 

  9. Wang, R., Zhuge, J., Huang, R., Tian, Y., Xiao, H., Zhang, L., Li, C., Zhang, X., Wang, Y.: Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans. Electron Devices 54(6), 1288–1294 (2007)

    Article  Google Scholar 

  10. Iniguez, B., Jimenez, D., Roig, J., Hamid, H.A., Marsal, L.F., Pallares, J.: Explicit continuous model for long-channel undoped surrounding gate MOSFETs. IEEE Trans. Electron Devices 52(8), 1868–1873 (2005)

    Article  Google Scholar 

  11. Jang, S.L., Liu, S.S.: An analytical surrounding gate MOSFET model. Solid-State Electron. 42(5), 721–728 (1998)

    Article  Google Scholar 

  12. Jimenez, D., Iniguez, B., Sune, J., Marsal, L.F., Pallares, J., Roig, J., Flores, D.: Continuous analytic current–voltage model for surrounding-gate MOSFETs. IEEE Electron Device Lett. 25(8), 571–573 (2004)

    Article  Google Scholar 

  13. Cheralathan, M., Cerdeira, A., Iniguez, B.: Compact model for long-channel cylindrical surrounding-gate MOSFETs valid from low to high doping concentrations. Solid-State Electron. 55(1), 13–18 (2011)

    Article  Google Scholar 

  14. Cousin, B., Reyboz, M., Rozeau, O., Jaud, M., Ernst, T., Jomaah, J.: A unified short-channel compact model for cylindrical surrounding-gate MOSFET. Solid-State Electron. 56(1), 40–46 (2011)

    Article  Google Scholar 

  15. Yu, B., Yuan, Y., Song, J., Taur, Y.: A two-dimensional analytical solution for short-channel effects in nanowire MOSFETs. IEEE Trans. Electron Devices 56(10), 2357–2362 (2009)

    Article  MathSciNet  Google Scholar 

  16. Moldovan, O., Iniguez, B., Jimenez, D., Roig, J.: Analytical charge and capacitance models of undoped cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 54(1), 162–165 (2007)

    Article  Google Scholar 

  17. Jimenez, D., Saenz, J.J., Iniguez, B., Sune, J., Marsal, L.F., Pallares, J.: Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett. 25(5), 314–316 (2004)

    Article  Google Scholar 

  18. He, J., Zhang, X., Zhang, G., Chan, M.: A carrier-based DCIV model for long channel undoped cylindrical surrounding-gate MOSFETs. Solid-State Electron. 50(3), 416–421 (2006)

    Article  Google Scholar 

  19. Pao, H.C., Sah, C.T.: Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron. 9, 927 (1966)

    Article  Google Scholar 

  20. Kranti, A., Haldar, R.S., Gupta, R.S.: Optimization for improved short channel performance of surrounding/cylindrical gate MOSFETs. Electron. Lett. 37(12), 533–534 (2001)

    Article  Google Scholar 

  21. Bian, W., He, J., Tao, Y., Fang, M., Feng, J.: An analytical potential-based model for undoped nanoscale surrounding-gate MOSFETs. IEEE Trans. Electron Devices 54(9), 2293–2303 (2007)

    Article  Google Scholar 

  22. Borli, H., Kolberg, S., Fjeldly, T.A., Iniguez, B.: Precise modeling framework for short-channel double-gate and gate-all-around MOSFETs. IEEE Trans. Electron Devices 55(10), 2678–2686 (2008)

    Article  Google Scholar 

  23. Kranti, A., Haldar, S., Gupta, R.S.: Analytical model for threshold voltage and I–V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET. Microelectron. Eng. 56, 241–259 (2001)

    Article  Google Scholar 

  24. Kumar, M.J., Orouji, A.A., Dhakad, H.: New dual-material surrounding gate nanoscale MOSFET: analytical threshold voltage model. IEEE Trans. Electron Devices 53(4), 920–923 (2006)

    Article  Google Scholar 

  25. Sarkar, A., De, S., Dey, A., Sarkar, C.K.: A new analytical subthreshold model of SRG MOSFET with analogue performance investigation. Int. J. Electron. 99(2), 267–283 (2012)

    Article  Google Scholar 

  26. Baishya, S., Mallik, A., Sarkar, C.K.: A subthreshold surface potential model for short-channel MOSFET taking into account the varying depth of channel depletion layer due to source and drain Junctions. IEEE Trans. Electron Devices 53(3), 507–514 (2006)

    Article  Google Scholar 

  27. Lundstrom, M.S., Guo, J.: Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer, New York (2006)

    Google Scholar 

  28. Woerlee, P.H., Knitel, M.J., Langevelde, R.V., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., Zegers-van Duijnhoven, A.T.A.: RF CMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)

    Article  Google Scholar 

  29. Momose, H.S., Monfuzi, E., Yoshitomi, T., Ohguro, T., Saito, M., Morimoto, T., Katsumata, Y., Iwai, H.: High frequency AC characteristics of 1.5-nm gate oxide MOSFETs. In: Proc. Electron Devices Meeting IEDM’96, pp. 105–107. IEEE Press, New York (1996)

    Google Scholar 

  30. Lazaro, A., Iniguez, B.: RF and noise model of gate-all-around MOSFETs. Semicond. Sci. Technol. 23(7), 075022 (2008)

    Article  Google Scholar 

  31. Nae, B., Lazaro, A., Iniguez, B.: High frequency and noise model of gate-all-around metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 105(7), 074505 (2009)

    Article  Google Scholar 

  32. Device simulator ATLAS user manual.: Silvaco Int., Santa Clara, CA. http://www.silvaco.com. Accessed 26 May 2011

  33. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pala, M.G., Buran, C., Poli, S., Mouis, M.: Full quantum treatment of surface roughness effects in Silicon nanowire and double gate FETs. J. Comput. Electron. 8(3–4), 374–381 (2009)

    Article  Google Scholar 

  35. Cerdeira, A., Iñiguez, B., Estrada, M.: Compact model for short channel symmetric doped double-gate MOSFETs. Solid-State Electron. 52(7), 1064–1070 (2008)

    Article  Google Scholar 

  36. Yamaguchi, K.: A mobility model for carriers in the MOS inversion layer. IEEE Trans. Electron Devices 30(6), 658–663 (1983)

    Article  Google Scholar 

  37. Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An analytical drain current model for dual material engineered cylindrical/surrounded gate MOSFET. Microelectron. J. 43, 17–24 (2012)

    Article  Google Scholar 

  38. Ward, D.E., Dutton, R.W.: A charge-oriented model for MOS transistor capacitances. IEEE J. Solid-State Circuits SSC-13(5), 703–708 (1978)

    Article  Google Scholar 

  39. Pailloncy, G., Raynaud, C., Vanmackelberg, M., Danneville, F., Lepilliet, S., Raskin, J.P., Dambrine, G.: Impact of downscaling on high-frequency noise performance of bulk and SOI MOSFETs. IEEE Trans. Electron Devices 51(10), 1605–1612 (2004)

    Article  Google Scholar 

  40. Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans. Electron Devices 57(4), 820–826 (2010)

    Article  Google Scholar 

  41. Enz, C.C., Vittoz, E.A.: Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design. Wiley, New York (2006)

    Book  Google Scholar 

  42. Lim, T.C., Bernard, E., Rozeau, O., Ernst, T., Guillaumot, B., Vulliet, N., Buj-Dufournet, C., Paccaud, M., Lepilliet, S., Dambrine, G., Danneville, F.: Analog/RF performance of multichannel SOI MOSFET. IEEE Trans. Electron Devices 56(7), 1473–1482 (2009)

    Article  Google Scholar 

  43. Kim, S.-H., Fossum, J.G., Yang, J.-W.: Modeling and significance of fringing capacitance in nonclassical CMOS devices with gate source/drain underlap. IEEE Trans. Electron Devices 53(9), 2143–2150 (2006)

    Article  Google Scholar 

  44. Dambrine, G., Raynaud, C., Lederer, D., Dehan, M., Rozeaux, O., Vanmackelberg, M., Danneville, F., Lepilliet, S., Raskin, J.P.: What are the limiting parameters of deep-submicron MOSFETs for high frequency applications. IEEE Electron Device Lett. 24(3), 189–191 (2003)

    Article  Google Scholar 

  45. Mohney, S.E., Wang, Y., Cabassi, M.A., Lew, K.K., Dey, S., Redwing, J.M., Mayer, T.S.: Measuring the specific contact resistance of contacts to semiconductor nanowires. Solid-State Electron. 49, 227–232 (2005)

    Article  Google Scholar 

  46. Shenoy, R.S., Saraswat, K.C.: Optimization of extrinsic source/ drain resistance in ultrathin body double-gate FETs. IEEE Trans. Nanotechnol. 2(4), 265–270 (2003)

    Article  Google Scholar 

  47. Zhuge, J., Wang, R., Huang, R., Zhang, X., Wang, Y.: Investigation of parasitic effects and design optimization in silicon nanowire MOSFETs for RF applications. IEEE Trans. Electron Devices 55(8), 2142–2147 (2008)

    Article  Google Scholar 

  48. Jin, X., Ou, J.J., Chen, C.H., Liu, W., Deen, M.J., Gray, P.R., Hu, C.: An effective gate resistance model for CMOS RF and noise modeling. In: Proc. Electron Devices Meeting IEDM’98, p. 9. IEEE Press, New York (1998)

    Google Scholar 

  49. Wernersson, L.-E., Thelander, C., Lind, E., Samuelson, L.: III–V Nanowires—extending a narrowing road. Proc. IEEE 98(12), 2047–2060 (2010)

    Article  Google Scholar 

  50. Dupré, C., Ernst, T., Maffini-Alvaro, V., Delaye, V., Hartmann, J.-M., Borel, S., Vizioz, C., Faynot, O., Ghibaudo, G., Deleonibus, S.: 3D nanowire gate-all-around transistors: Specific integration and electrical features. Solid-State Electron. 52(4), 813–816 (2008)

    Article  Google Scholar 

  51. Singh, N., Buddharaju, K.D., Manhas, S.K., Agarwal, A., Rustagi, S.C., Lo, G.Q., Balasubramanian, N., Kwong, D.-L.: Si, SiGe nanowire devices by top–down technology and their applications. IEEE Trans. Electron Devices 55(11), 3107–3118 (2008)

    Article  Google Scholar 

  52. Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)

    Article  Google Scholar 

  53. Zou, J., Xu, Q., Luo, J., Wang, R., Huang, R., Wang, Y.: Predictive 3-D modeling of parasitic gate capacitance in gate-all-around cylindrical silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(10), 3379–3387 (2011)

    Article  Google Scholar 

  54. Wei, L., Lan, D.J., Wong, H.-S.P.: Effect, 1-D and 2-D devices performance comparison including parasitic gate capacitance and screening. Proc. Int. Elec. Dev. Meeting 741–744 (2007)

  55. Deng, J., Wong, H.-S.P.: Modeling and analysis of planar-gate electrostatic capacitance of 1-D FET with multiple cylindrical conducting channels. IEEE Trans. Electron Devices 54(9), 2377–2385 (2007)

    Article  Google Scholar 

  56. Wei, L., Deng, J., Chang, L.-W., Kim, K., Chuang, C.-T., Wong, H.-S.P.: Selective device structure scaling and parasitic engineering: A way to extend the technology roadmap. IEEE Trans. Electron Devices 56(2), 312–320 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the DST, Govt. of India for its financial assistance in carrying out research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angsuman Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., De, S., Dey, A. et al. Analog and RF performance investigation of cylindrical surrounding-gate MOSFET with an analytical pseudo-2D model. J Comput Electron 11, 182–195 (2012). https://doi.org/10.1007/s10825-012-0396-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0396-9

Keywords

Navigation