Skip to main content
Log in

Acoustic Phonons and Phonon Bottleneck in Single Wall Nanotubes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Acoustic phonons are modeled by applying the elastic continuum model to single wall nanotubes (SWNTs) with the nanotube approximated as an elastic membrane with cylindrical symmetry. Donnell’s equations of motion for a cylindrical membrane are solved using the Rayleigh-Ritz method to give the acoustic vibrational modes of SWNTs. The dispersion relations are compared for various diameter nanotubes. These calculations provide the full set of phonon modes for the SWNTs; this is in contrast to most calculations that consider a subset of these modes. The allowed phonon assisted electronic transitions are considered for intravalley-intrasubband and intravalley-intersubband transitions. Finally, these results indicate that phonon-bottleneck effects should be important for the short nanotubes being considered for nanotube-based devices exhibiting quasi-ballistic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354(7), 56 (1991).

    Article  Google Scholar 

  2. R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, “Electronic structure of graphene tubules based on C_60,” Phys. Rev. B, 46(3), 1804 (1992).

    Article  Google Scholar 

  3. R.A. Jishi, M.S Dresselhaus, and G. Dresselhaus,“Symmetry properties of chiral nanotubes,” Phys. Rev. B, 47(24), 16671 (1993).

    Article  Google Scholar 

  4. R. Saito, A.A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, and M.A. Pimenta, “Optical properties and Resonant Raman Spectroscopy of Carbon Nanotubes,” Phys. Rev. Lett., 88(2), 027401 (2002).

    Article  PubMed  Google Scholar 

  5. Hidekatsu Suzuura and Tsuneya Ando, “Phonons and electron-phonon scattering in carbon nanotubes,” Phys Rev. B, 65(23), 235412 (2002).

    Article  Google Scholar 

  6. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic Circuits with Carbon Nanotube Transistors”, Science, 294(5545), 1317 (2001).

    Article  PubMed  Google Scholar 

  7. J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, and J. Tersoff, “Electrically Induced Optical Emission from a Carbon Nanotube FET,” Science, 300(5620), 783 (2003).

    Article  PubMed  Google Scholar 

  8. Jing Guo, Sebastian Goasguen, Mark Lundstrom, and Supriyo Datta, “Metal—Insulator—Semiconductor Electrostatics of Carbon Nanotubes,” Appl. Phys. Lett., 81(8), 1486 (2002).

    Article  Google Scholar 

  9. P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley “Nanotube nanodevice,” Science, 278(5335), 100 (1997).

    Article  Google Scholar 

  10. J.M Xu, “Highly Ordered Carbon Nanotube Arrays and IR Detection,” Infrared Phys. and Tech., 42(3–5), 485 (2001).

    Article  Google Scholar 

  11. Mitra Dutta and Michael A. Stroscio, Phonons in Nanostructures (Cambridge University Press, UK, 2001); Mitra Dutta and Michael A. Stroscio (Eds.), Advances in Semiconductor Lasers and Applications to Optoelectronics (World Scientific, Singapore, 2000).

    Google Scholar 

  12. Amit Raichura, Mitra Dutta, and Michael A. Stroscio, “Quantized Acoustic Vibrations of Single-Wall Carbon Nanotube,” J. Appl. Phys., 94(6), 4060 (2003).

    Article  Google Scholar 

  13. Amit Raichura, Mitra Dutta, and Michael A. Stroscio, “Quantized Optical Vibrational Modes of Finite-Length Multi Wall Nanotubes: Optical Deformation Potential,” Superlat. & Micros., 35(1–2), 147 (2004).

    Google Scholar 

  14. H. Kraus, Thin Elastic Shells (Wiley, New York, 1967).

    Google Scholar 

  15. G. Pennington and N. Goldsman, “Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes,” Phys. Rev. B, 68(4), 045426 (2003).

    Article  Google Scholar 

  16. Philip G. Collins, M. Hersam, M. Arnold, R. Martel, and ph. Avouris, “Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes,” Phys. Rev. Lett., 86(14), 3128 (2001).

    Article  PubMed  Google Scholar 

  17. Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, and Hongjie Dai, “Ballistic carbon nanotube field-effect transistors,” Nature (London), 424(6949), 654 (2004).

    Article  Google Scholar 

  18. A. Javey, Jing Guo, Magnus Paulsson, Qian Wang, David Mann, Mark Lundstrom, and Hongjie Dai, “High field quasi-ballistic transport in short carbon nanotubes,” Phys. Rev. Lett., 92(10), 106804 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raichura, A., Dutta, M. & Stroscio, M.A. Acoustic Phonons and Phonon Bottleneck in Single Wall Nanotubes. J Comput Electron 4, 91–95 (2005). https://doi.org/10.1007/s10825-005-7115-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-005-7115-8

Abstract

Navigation