Skip to main content
Log in

Reliable gas-phase tautomer equilibria of drug-like molecule scaffolds and the issue of continuum solvation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Accurate calculation of relative tautomer energies in different environments is a prerequisite to many parameters of relevance in drug discovery. This work provides a thorough benchmark of the semiempirical methods AM1, PM3 and GFN2-xTB, the force-field OPLS4, Hartree–Fock and HF-3c, the density functionals PBEh-3c, B97-3c, r2SCAN-3c, PBE, PBE0, TPSS, r2SCAN, ω-B97X-V, M06-2X, B3LYP, B2PLYP, and second-order perturbation theory MP2 versus the gold-standard coupled-cluster DLPNO-CCSD(T) using the def2-QZVPP basis set. The outperforming method identified is M06-2X, whereas r2SCAN-3c is the best-perfoming one in the set of cost-optimized methods. Application of the two methods on a challenging subset from the SAMPL2 challenge provides evidence that deviations from experiment are caused by deficiencies of current continuum solvation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. Sayle RA (2010) So You Think You Understand Tautomerism? J Comput Aided Mol Des 24:485–496

    Article  CAS  PubMed  Google Scholar 

  2. Taylor PJ, van der Zwan G, Antonov L (2014) Tautomerism: introduction, history, and recent developments in experimental and theoretical methods. In: Antonov L (ed) Tautomerism. Wiley VCH, Weinheim

    Google Scholar 

  3. Martin Y (2010) Tautomerism, Hammett σ, and QSAR. J Comput Aided Mol Des 24:613–616

    Article  CAS  PubMed  Google Scholar 

  4. Martin Y (2009) Let’s Not Forget Tautomers. J Comput Aided Mol Des 23:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pospisil P, Ballmer P, Scapozza L, Folkers G (2003) Tautomerism in computer-aided drug design. J Rec Signal Transd 23:361–371

    Article  CAS  Google Scholar 

  6. Clark T (2010) Tautomers and reference 3D-structures: the orphans of in silico drug design. J Comput Aided Mol Des 24:605–611

    Article  CAS  PubMed  Google Scholar 

  7. Cavasin AT, Hillisch A, Uellendahl F, Schneckener S, Göller AH (2018) Reliable and performant identification of low-energy conformers in the gas phase and water. J Chem Inf Model 58:1005–1020

    Article  CAS  PubMed  Google Scholar 

  8. Seep L, Bonin A, Meier K, Diedam H, Göller AH (2021) Ensemble completeness in conformer sampling: the case of small macrocycles. J Cheminform 13:55

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fraczkiewicz R, Lobell M, Göller AH, Krenz U, Schoenneis R, Clark RD, Hillisch A (2015) Best of both worlds: combining pharma data and state of the art modeling technology to improve in silico pKa prediction. J Chem Inf Model 55:389–397

    Article  CAS  PubMed  Google Scholar 

  10. Sitzmann M, Ihlenfeldt WD, Nicklaus MC (2010) Tautomerism in Large Databases. J Comput aided mol des 24:521–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tautomerism, ed. Antonov, L., Wiley VCH, Weinheim, 2014.

  12. Wieder M, Fass J, Chodera JD (2021) Fitting quantum machine learning potentials to experimental free energy data: predicting tautomer ratios in solution. Chem Sci 12:11364–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warr WA (2010) Tautomerism in chemical information management systems. J Comput Aided Mol Des 24:497–520

    Article  CAS  PubMed  Google Scholar 

  14. Sayle R, Delany JJ (1999) Canonicalization and Enumeration of Tautomers. Daylight EMUG99.

  15. RDKit: Open-source cheminformatics. http://www.rdkit .org

  16. Kochev NT, Paskaleva VH, Jeliazkova N (2013) Ambit-tautomer: an open source tool for tautomer generation. Mol Inf 32:481–504

    Article  CAS  Google Scholar 

  17. Guasch L, Peach ML, Nicklaus MC (2015) Tautomerism of warfarin: combined chemoinformatics, quantum chemical, and NMR investigation. J Org Chem 80:9900–9909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oziminski WP, Wiśniewski I (2021) Quantum-chemical study on the relative stability of sildenafil tautomers. Struct Chem 32:1733–1743

    Article  CAS  Google Scholar 

  19. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and Noncovalent Interactions. J Chem Theory Comput 7:291–309

    Article  CAS  PubMed  Google Scholar 

  20. Geballe MT, Skillman AG, Nicholls A, Guthrie J, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24:259–279

    Article  CAS  PubMed  Google Scholar 

  21. Fogarasi G (2010) Studies on tautomerism: benchmark quantum chemical calculations on formamide and formamidine. J Mol Struct 978:257–262

    Article  CAS  Google Scholar 

  22. Milletti F, Vulpetti A (2010) Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 50:1062–1074

    Article  CAS  PubMed  Google Scholar 

  23. Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75

    Article  CAS  PubMed  Google Scholar 

  24. Pipeline Pilot, client version 21.2.0.2574, server version 21.2.0.2575, Dassault Systemes Biovia Corp, 2020

  25. Settings: Enumerate all Tautomers; maximally 1000; defaults.

  26. (a) Sadowski J, Gasteiger J, Klebe G (1994) Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures. J Chem Inf Comput Sci 34:1000–1008; (b) CORINA, Molecular Networks GmbH, Erlangen, Germany (http://www.molecular-networks.com).

  27. Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB: an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput 15:1652–1671

    Article  CAS  PubMed  Google Scholar 

  28. Riplinger C, Neese F (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 138:34106

    Article  Google Scholar 

  29. Piecuch P, Kucharski SA, Kowalski K, Musial M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comp Phys Commun 149:71–96

    Article  CAS  Google Scholar 

  30. Neese F (2012) The ORCA PROGRAM SYSTEM. WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  31. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  32. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  33. Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W, Ross GA, Dahlgren MK, Russell E, Von Bargen CD, Abel R, Friesner RA, Harder ED (2021) OPLS4: improving force field accuracy on challenging regimes of chemical space. J Chem Theory Comput 17:4291–4300

    Article  CAS  PubMed  Google Scholar 

  34. Maestro Version 13.0.135, MMshare Version 5.6.135, Platform Linux-x86_64, Small-Molecule Drug Discovery Suite 2021–4, Schrodinger, LLC, New York, 2021.

  35. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew Burke Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  36. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  38. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Article  PubMed  Google Scholar 

  39. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  40. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  41. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117:587–597

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  PubMed  Google Scholar 

  44. Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J (2020) Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J Phys Chem Lett 11:8208–8215

    Article  CAS  PubMed  Google Scholar 

  45. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  47. Becke ADA (1993) New mixing of hartree-fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  48. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:34108

    Article  Google Scholar 

  49. Sure R, Grimme S (2013) Corrected small basis set hartree-fock method for large systems. J Comput Chem 34:1672–1685

    Article  CAS  PubMed  Google Scholar 

  50. Grimme S, Brandenburg JG, Bannwarth C, Hansen A (2015) Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys 143:054107

    Article  PubMed  Google Scholar 

  51. Brandenburg JG, Bannwarth C, Hansen A, Grimme S (2018) B97–3c: a revised low-cost variant of the B97-D density functional method. J Chem Phys 148:64104

    Article  Google Scholar 

  52. Grimme S, Hansen A, Ehlert S, Mewes J-M (2021) r2SCAN-3c: a “Swiss Army Knife” composite electronic-structure method. J Chem Phys 154:64103

    Article  CAS  Google Scholar 

  53. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  54. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2(5):799–805

    Article  Google Scholar 

  55. Zhong S, Barnes EC, Petersson GA (2008) Uniformly convergent N-tuple-zeta-augmented polarized (nZaP) basis sets for complete basis set extrapolations. I. Self-consistent field energies. J Chem Phys 129:184116

    Article  PubMed  Google Scholar 

  56. Neese F, Valeev EF (2011) Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated Ab initio methods? J Chem Theory Comput 7:33–43

    Article  CAS  PubMed  Google Scholar 

  57. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646

    Article  CAS  Google Scholar 

  58. Peterson KA, Dunning TH (2002) Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al-Ar, and the first row atoms B-Ne revisited. J Chem Phys 117:10548–10560

    Article  CAS  Google Scholar 

  59. Wahl O, Sander T (2020) Tautobase: an open tautomer database. J Chem Inf Model 60:1085–1089

    Article  CAS  PubMed  Google Scholar 

  60. Jensen F (1999) Introduction to Computational Chemistry. Wiley VCH, Weinheim, p 29

    Google Scholar 

  61. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  PubMed  Google Scholar 

  62. Klamt A, Diedenhofen M (2010) Some conclusions regarding the predictions of tautomeric equilibria in solution based on the SAMPL2 challenge. J Comput Aided Mol Des 24:621–625

    Article  CAS  PubMed  Google Scholar 

  63. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des 24:317–333

    Article  CAS  PubMed  Google Scholar 

  64. Kast S, Heil J (2010) Prediction of tautomer ratios by embedded-cluster integral equation theory. J Comput Aided Mol Des 24:343–353

    Article  CAS  PubMed  Google Scholar 

  65. Soteras I, Orozco M, Luque FJ (2010) Performance of the IEF-MST solvation continuum model in the SAMPL2 blind test prediction of hydrationand tautomerization free energies. J Comput Aided Mol Des 24:281–291

    Article  CAS  PubMed  Google Scholar 

  66. Evans DA, Smith GF, Wahid MA (1967) The tautomerism of 3-hydroxyisoquinolines. J Chem Soc B. https://doi.org/10.1039/j29670000590

    Article  Google Scholar 

  67. Sure R, el Mahdali M, Plajer A, Deglmann P (2021) Towards a converged strategy for including microsolvation in reaction mechanism calculations. J Comput Aided Mol Des 35:473–492

    Article  CAS  PubMed  Google Scholar 

  68. Spicher S, Plett C, Pracht P, Hansen A, Grimme S (2022) Automated molecular cluster growing for explicit solvation by efficient force field and tight binding methods. J Chem Theory Comput 18:3174–3189

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Contributions

AG developed the concept, did all calculations and wrote the manuscript.

Corresponding author

Correspondence to Andreas H. Göller.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10822_2022_480_MOESM1_ESM.sdf

Additional File 2: Text file with the 3D-coordinates of 65 tautomers of the 13 molecules of dataset 1 in SDF format. (Text) (SDF 135 kb)

10822_2022_480_MOESM2_ESM.sdf

Additional File 3: Text file with the 3D-coordinates of 24 tautomers of the 11 molecules of dataset 2 in SDF format. (Text) (SDF 24 kb)

10822_2022_480_MOESM3_ESM.docx

Additional File 1: Complete set of plots of the tautomer states and ΔE histograms for all molecules in all methods and additional tables with tautomer energies for dataset 2. (PDF) (DOCX 2912 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göller, A.H. Reliable gas-phase tautomer equilibria of drug-like molecule scaffolds and the issue of continuum solvation. J Comput Aided Mol Des 36, 805–824 (2022). https://doi.org/10.1007/s10822-022-00480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00480-3

Keywords

Navigation