Skip to main content
Log in

Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Water plays an important role in mediating protein-ligand interactions. Water rearrangement upon a ligand binding or modification can be very slow and beyond typical timescales used in molecular dynamics (MD) simulations. Thus, inadequate sampling of slow water motions in MD simulations often impairs the accuracy of the accuracy of ligand binding free energy calculations. Previous studies suggest grand canonical Monte Carlo (GCMC) outperforms normal MD simulations for water sampling, thus GCMC has been applied to help improve the accuracy of ligand binding free energy calculations. However, in prior work we observed protein and/or ligand motions impaired how well GCMC performs at water rehydration, suggesting more work is needed to improve this method to handle water sampling. In this work, we applied GCMC in 21 protein-ligand systems to assess the performance of GCMC for rehydrating buried water sites. While our results show that GCMC can rapidly rehydrate all selected water sites for most systems, it fails in five systems. In most failed systems, we observe protein/ligand motions, which occur in the absence of water, combine to close water sites and block instantaneous GCMC water insertion moves. For these five failed systems, we both extended our GCMC simulations and tested a new technique named grand canonical nonequilibrium candidate Monte Carlo (GCNCMC). GCNCMC combines GCMC with the nonequilibrium candidate Monte Carlo (NCMC) sampling technique to improve the probability of a successful water insertion/deletion. Our results show that GCNCMC and extended GCMC can rehydrate all target water sites for three of the five problematic systems and GCNCMC is more efficient than GCMC in two out of the three systems. In one system, only GCNCMC can rehydrate all target water sites, while GCMC fails. Both GCNCMC and GCMC fail in one system. This work suggests this new GCNCMC method is promising for water rehydration especially when protein/ligand motions may block water insertion/removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laage D, Elsaesser T, Hynes JT (2017) Water dynamics in the hydration shells of biomolecules. Chem Rev 117:10694–10725

    Article  CAS  Google Scholar 

  2. Maurer M, De Beer SBA, Oostenbrink C (2016) Calculation of relative binding free energy in the water-filled active site of oligopeptide-binding protein A. Molecules 21:499

    Article  Google Scholar 

  3. Michel J, Tirado-Rives J, Jorgensen WL (2009) Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 131:15403–15411

    Article  CAS  Google Scholar 

  4. Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57:2911–2937

    Article  CAS  Google Scholar 

  5. Ge Y, Baumann H, Mobley D (2022) Absolute binding free energy calculations for buried water molecules. ChemRxiv

  6. Adams D (1974) Chemical potential of hard-sphere fluids by monte carlo methods. Mol Phys 28:1241–1252

    Article  CAS  Google Scholar 

  7. Adams D (1975) Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. Mol Phys 29:307–311

    Article  CAS  Google Scholar 

  8. Mezei M (1980) A cavity-biased ( T, V, \(\mu\) ) Monte Carlo method for the computer simulation of fluids. Mol Phys 40:901–906

    Article  CAS  Google Scholar 

  9. Mezei M (1987) Grand-canonical ensemble monte carlo study of dense liquid: Lennard-Jones. Soft Spheres Water Mol Phys 61:565–582

    Article  CAS  Google Scholar 

  10. Ross GA, Bodnarchuk MS, Essex JW (2015) Water sites, networks, and free energies with grand canonical Monte Carlo. J Am Chem Soc 137:14930–14943

    Article  CAS  Google Scholar 

  11. Ross GA, Bruce Macdonald HE, Cave-Ayland C, Cabedo Martinez AI, Essex JW (2017) Replica-exchange and standard state binding free energies with grand canonical Monte Carlo. J Chem Theory Comput 13:6373–6381

    Article  CAS  Google Scholar 

  12. Bruce Macdonald HE, Cave-Ayland C, Ross GA, Essex JW (2018) Ligand binding free energies with adaptive water networks: two-dimensional grand canonical alchemical perturbations. J Chem Theory Comput 14:6586–6597

    Article  CAS  Google Scholar 

  13. Bodnarchuk MS, Packer MJ, Haywood A (2020) Utilizing grand canonical Monte Carlo methods in drug discovery. ACS Med Chem Lett 11:77–82

    Article  CAS  Google Scholar 

  14. Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L (2020) Enhancing water sampling in free energy calculations with grand canonical Monte Carlo. J Chem Theory Comput 16:6061–6076

    Article  CAS  Google Scholar 

  15. Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL (2022) Enhancing sampling of water rehydration on ligand binding: a comparison of techniques. J Chem Theory Comput 18:1359–1381

    Article  Google Scholar 

  16. Bergazin TD, Ben-Shalom IY, Lim NM, Gill SC, Gilson MK, Mobley DL (2021) Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo. J Comput Aided Mol Des 35:167–177

    Article  CAS  Google Scholar 

  17. Melling O, Samways M, Ge Y, Mobley D, Essex J (2022) Enhanced grand canonical sampling of occluded water sites using nonequilibrium candidate Monte Carlo. ChemRxiv

  18. Ben-Shalom IY, Lin Z, Radak BK, Lin C, Sherman W, Gilson MK (2020) Accounting for the central role of interfacial water in protein-ligand binding free energy calculations. J Chem Theory Comput 16:7883–7894

    Article  CAS  Google Scholar 

  19. Barillari C, Taylor J, Viner R, Essex JW (2007) Classification of water molecules in protein binding sites. J Am Chem Soc 129:2577–2587

    Article  CAS  Google Scholar 

  20. Wall ME (2009) Micro and nano technologies in bioanalysis. Methods in molecular Biolog\(^{TM}\). In: Lee JW, Foote RS (eds) Methods and protocols. Humana Press, Totowa, pp 269–279

    Google Scholar 

  21. Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD (2002) The computational crystallography toolbox: crystallographic algorithms in a reusable software framework. J Appl Crystallogr 35:126–136

    Article  CAS  Google Scholar 

  22. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes CR, Wang L-P, Lane TJ, Pande VS (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109:1528–1532

    Article  CAS  Google Scholar 

  23. Emsley P, Cowtan K (2004) Coot : model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  24. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  25. Samways ML, Bruce Macdonald HE, Essex JW (2020) Grand: a python module for grand canonical water sampling in OpenMM. J Chem Inf Model 60:4436–4441

    Article  CAS  Google Scholar 

  26. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang L-P, Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13:e1005659

    Article  Google Scholar 

  27. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  29. Qiu Y, Smith DGA, Boothroyd S, Jang H, Hahn DF, Wagner J, Bannan CC, Gokey T, Lim VT, Stern CD, Rizzi A, Tjanaka B, Tresadern G, Lucas X, Shirts MR, Gilson MK, Chodera JD, Bayly CI, Mobley DL, Wang LP (2021) Development and benchmarking of open force field v1.0.0–the parsley small-molecule force field. J Chem Theory Comput 17:6262–6280

    Article  CAS  Google Scholar 

  30. Wagner J, Thompson M, Dotson D hyejang,; Rodríguez-Guerra, J. openforcefield/openforcefields: version 1.2.1 “Parsley” update. https://doi.org/10.5281/zenodo.4021623

  31. Leimkuhler B, Matthews C (2012) Rational construction of stochastic numerical methods for molecular sampling. Appl Math Res eXpress 2012:abs010

    Google Scholar 

  32. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N -( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  34. Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K \({_{a}}\) values. J Chem Theory Comput 7:2284–2295

    Article  Google Scholar 

  35. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical p K \({_{a}}\) predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  36. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  CAS  Google Scholar 

  37. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503–528

    Article  Google Scholar 

  38. Fields BA, Bartsch HH, Bartunik HD, Cordes F, Guss JM, Freeman HC (1994) Accuracy and precision in protein crystal structure analysis: two independent refinements of the structure of poplar plastocyanin at 173 K. Acta Crystallogr D Biol Crystallogr 50:709–730

    Article  CAS  Google Scholar 

  39. Ohlendorf DH (1994) Accuracy of refined protein structures. II. Comparison of four independently refined models of human interleukin 1beta. Acta Crystallogr D Biol Crystallogr 50:808–812

    Article  CAS  Google Scholar 

  40. Samways ML, Taylor RD, Bruce Macdonald HE, Essex JW (2021) Water molecules at protein-drug interfaces: computational prediction and analysis methods. Chem Soc Rev 50:9104–9120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L.M. appreciates financial support from the National Institutes of Health (R01GM108889 and R01GM132386). DLM and YG also appreciate financial support from XtalPi. We appreciate the Open Force Field Consortium for its support of the Open Force Field Initiative, which provided software infrastructure used in this work.

Author information

Authors and Affiliations

Authors

Contributions

DLM is a member of the Scientific Advisory Boards of OpenEye Scientific Software and Anagenex and is an Open Science Fellow with Roivant.

Corresponding author

Correspondence to David L. Mobley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 14780 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Melling, O.J., Dong, W. et al. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo. J Comput Aided Mol Des 36, 767–779 (2022). https://doi.org/10.1007/s10822-022-00479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00479-w

Keywords

Navigation