Skip to main content
Log in

Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We propose a method to identify the correct binding mode of a ligand with a protein among multiple predicted docking poses. Our method consists of two steps. First, five independent MD simulations with different initial velocities are performed for each docking pose, in order to evaluate its stability. If the root-mean-square deviations (RMSDs) of heavy atoms from the docking pose are larger than a given threshold (2.0 Å) in all five parallel runs, the pose is filtered out and discarded. Then, we perform accurate all-atom binding free energy calculations for the residual poses only. The pose with the lowest binding free energy is identified as the correct pose. As a test case, we applied our method to a previously built cross-docking test set, which included 104 complex systems. We found that the present method could successfully identify the correct ligand binding mode for 72% (75/104) of the complexes for current test set. The possible reasons for the failure of the method in the other cases were investigated in detail, to enable future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Renaud J-P, Chari A, Ciferri C, Liu W-t, Rémigy H-W, Stark H, Wiesmann C (2018) Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov 17:471–492

    PubMed  CAS  Google Scholar 

  2. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Grosdidier S, Fernández-Recio J (2009) Docking and scoring: applications to drug discovery in the interactomics era. Expert Opin Drug Discov 4:673–686

    PubMed  CAS  Google Scholar 

  4. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    PubMed  CAS  Google Scholar 

  5. Kontoyianni M (2017) Docking and virtual screening in drug discovery. In: Lazar IM, Kontoyianni M, Lazar AC (eds) Proteomics for drug discovery, vol 1647. Springer, New York, pp 255–266

    Google Scholar 

  6. Liu Z, Su M, Han L, Liu J, Yang Q, Li Y, Wang R (2017) Forging the basis for developing protein-ligand interaction scoring functions. Acc Chem Res 50:302–309

    PubMed  CAS  Google Scholar 

  7. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    PubMed  CAS  Google Scholar 

  8. Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D (2006) sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank. J Chem Inf Model 46:717–727

    PubMed  CAS  Google Scholar 

  9. Paul N, Kellenberger E, Bret G, Muller P, Rognan D (2004) Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54:671–680

    PubMed  CAS  Google Scholar 

  10. Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites–10 years on. Nucleic Acids Res 43:D399–D404

    PubMed  CAS  Google Scholar 

  11. Li Y, Su M, Liu Z, Li J, Liu J, Han L, Wang R (2018) Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark. Nat Protoc 13:666–680

    PubMed  CAS  Google Scholar 

  12. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Rosenfeld R, Vajda S, DeLisi C (1995) Flexible docking and design. Annu Rev Biophys Biomol Struct 24:677–700

    PubMed  CAS  Google Scholar 

  14. Krippahl L, Barahona P (2015) Protein docking with predicted constraints. Algorithms Mol Biol 10:9

    PubMed  PubMed Central  Google Scholar 

  15. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84

    PubMed  CAS  Google Scholar 

  16. Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975

    PubMed  CAS  Google Scholar 

  17. Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diterse test set. J Chem Inf Model 49:1079–1093

    PubMed  CAS  Google Scholar 

  18. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086

    PubMed  CAS  Google Scholar 

  19. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508

    PubMed  CAS  Google Scholar 

  20. Greenidge PA, Lewis RA, Ertl P (2016) Boosting pose ranking performance via rescoring with MM-GBSA. Chem Biol Drug Des 88:317–328

    PubMed  CAS  Google Scholar 

  21. Wichapong K, Rohe A, Platzer C, Slynko I, Erdmann F, Schmidt M, Sippl W (2014) Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors. J Chem Inf Model 54:881–893

    PubMed  CAS  Google Scholar 

  22. Greenidge PA, Kramer C, Mozziconacci JC, Sherman W (2014) Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. J Chem Inf Model 54:2697–2717

    PubMed  CAS  Google Scholar 

  23. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877

    PubMed  CAS  Google Scholar 

  24. Thompson DC, Humblet C, Joseph-McCarthy D (2008) Investigation of MM-PBSA rescoring of docking poses. J Chem Inf Model 48:1081–1091

    PubMed  CAS  Google Scholar 

  25. Zhang X, Wong SE, Lightstone FC (2014) Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. J Chem Inf Model 54:324–337

    PubMed  CAS  Google Scholar 

  26. Lu Y, Wang R, Yang CY, Wang S (2007) Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47:668–675

    PubMed  CAS  Google Scholar 

  27. Genheden S, Nilsson I, Ryde U (2011) Binding affinities of factor Xa inhibitors estimated by thermodynamic integration and MM/GBSA. J Chem Inf Model 51:947–958

    PubMed  CAS  Google Scholar 

  28. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    PubMed  CAS  Google Scholar 

  29. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer, Berlin

    Google Scholar 

  30. Williams-Noonan BJ, Yuriev E, Chalmers DK (2018) Free energy methods in drug design: prospects of “alchemical perturbation” in medicinal chemistry. J Med Chem 61:638–649

    PubMed  CAS  Google Scholar 

  31. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31:201–211

    PubMed  CAS  Google Scholar 

  32. Liu K, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model 57:2514–2522

    PubMed  CAS  Google Scholar 

  33. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    PubMed  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.01: Gaussian Inc., Wallingford

  35. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394

    PubMed  CAS  Google Scholar 

  37. Gallicchio E, Kubo MM, Levy RM (2000) Enthalpy–entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J Phys Chem B 104:6271–6285

    CAS  Google Scholar 

  38. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606

    PubMed  CAS  Google Scholar 

  39. Xu L, Sun H, Li Y, Wang J, Hou T (2013) Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B 117:8408–8421

    PubMed  CAS  Google Scholar 

  40. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719–16729

    PubMed  CAS  Google Scholar 

  41. Okamoto Y, Kokubo H, Tanaka T (2014) Prediction of ligand binding affinity by the combination of replica-exchange method and double-decoupling method. J Chem Theory Comput 10:3563–3569

    PubMed  CAS  Google Scholar 

  42. Deng N, Cui D, Zhang BW, Xia J, Cruz J, Levy R (2018) Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands. Phys Chem Chem Phys 20:17081–17092

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551

    CAS  Google Scholar 

  44. Liu K, Kokubo H (2019) Uncovering abnormal changes in logP after fluorination using molecular dynamics simulations. J Comput Aided Mol Des 33:345–356

    PubMed  CAS  Google Scholar 

  45. Yang W, Bitetti-Putzer R, Karplus M (2004) Free energy simulations: use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence. J Chem Phys 120:2618–2628

    PubMed  CAS  Google Scholar 

  46. Homeyer N, Gohlke H (2013) FEW: A workflow tool for free energy calculations of ligand binding. J Comput Chem 34:965–973

    PubMed  CAS  Google Scholar 

  47. Hamelberg D, McCammon JA (2004) Standard Free Energy of Releasing a Localized Water Molecule from the Binding Pockets of Proteins: Double-Decoupling Method. J Am Chem Soc 126:7683–7689

    PubMed  CAS  Google Scholar 

  48. Kovalenko A, Hirata F (1999) Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys 110:10095

    CAS  Google Scholar 

  49. Essex JW, Jorgensen WL (1995) An empirical boundary potential for water droplet simulations. J Comput Chem 16:951–972

    CAS  Google Scholar 

  50. Woo H-J, Dinner AR, Roux B (2004) Grand canonical Monte Carlo simulations of water in protein environments. J Chem Phys 121:6392

    PubMed  CAS  Google Scholar 

  51. Young T, Abel R, Kim B, Berne BJ, Friesner RA (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. Proc Natl Acad Sci 104:808–813

    PubMed  CAS  Google Scholar 

  52. Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21:5–10

    PubMed  CAS  Google Scholar 

  53. Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP (2008) Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 51:5149–5171

    PubMed  CAS  Google Scholar 

  54. Song LF, Lee TS, Zhu C, York DM, Merz KM Jr (2019) Using AMBER18 for Relative Free Energy Calculations. J Chem Inf Model 59:3128–3135

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study used computational resources of the HPCI system provided by the TSUBAME Grid Cluster at the Global Scientific Information and Computing Center of Tokyo Institute of Technology through the HPCI System Research Project (Project ID hp180007). K. L. is grateful for the financial support from Scientific Research Foundation (2019KY0326, 2018BS038, 2018ZD005-A16) and Qihuang Project of Guangxi University of Chinese Medicine and the Special Fund for Hundred Talents Program and Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Contributions

KL and KH contributed equally.

Corresponding author

Correspondence to Hironori Kokubo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Kokubo, H. Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations. J Comput Aided Mol Des 34, 1195–1205 (2020). https://doi.org/10.1007/s10822-020-00340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00340-y

Keywords

Navigation