Skip to main content
Log in

Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (–CH2–CH=CH–CH2–) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson–Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (−290.2 kcal/mol) than the corresponding K628 reactivator (−260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Science 253:872–879

    Article  CAS  Google Scholar 

  2. Barnard EA (1974) In: Hubbard JI (ed) The peripheral nervous system. Plenum Press, New York, pp 201–224

  3. Katz B (1966) Nerve, muscle, and synapse. McGraw-Hill, New York

    Google Scholar 

  4. Quinn DM (1987) Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  5. Sussman JL, Harel M, Silman I (1993) Chem-Biol Interact 87:187–197

    Article  CAS  Google Scholar 

  6. Musilek K, Kuča K, Jun D, Dolezal M (2007) Curr Org Chem 11:229–238

    Article  CAS  Google Scholar 

  7. Marrs TC (1993) Pharmacol Ther 58:51–66

    Article  CAS  Google Scholar 

  8. Kassa J (2002) J Toxicol Clin Toxicol 40:803–816

    Article  CAS  Google Scholar 

  9. Worek F, Wille T, Koller M, Thiermann H (2013) Chem-Biol Interact 203:125–128

    Article  CAS  Google Scholar 

  10. Kassa J, Karasova JZ, Sepsova V, Bajgar J (2011) J Appl Biomed 9:225–230

    Article  CAS  Google Scholar 

  11. Kassa J, Karasova JZ, Kuča K, Musilek K (2010) Drug Chem Toxicol 33:227–232

    Article  CAS  Google Scholar 

  12. Bajgar J, Fusek J, Kuča K, Bartosova L, Jun D (2007) Mini-Rev Med Chem 7:461–466

    Article  CAS  Google Scholar 

  13. Kuča K, Hrabinova M, Jun D, Musilek K, Penhaker M, Krejcar O, Soukup O (2015) Med Chem 11:683–686

    Article  Google Scholar 

  14. Antonijevic E, Musilek K, Kuča K, Djukic-Cosic D, Vucinic S, Antonijevic B (2016) Neurotoxicology 55:33–39

    Article  CAS  Google Scholar 

  15. Musil K, Florianova V, Bucek P, Dohnal V, Kuča K, Musilek K (2016) J Pharm Biomed Anal 117:240–246

    Article  CAS  Google Scholar 

  16. Winter M, Wille T, Musilek K, Kuča K, Thiermann H, Worek F (2016) Toxicol Lett 244:136–142

    Article  CAS  Google Scholar 

  17. Zemek F, Zdarova JK, Sepsova V, Kuča K (2013) Int J Mol Sci 14:16076–16086

    Article  Google Scholar 

  18. Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuča K (2016) Arch Toxicol 90(12):2831–2859

    Article  CAS  Google Scholar 

  19. Musilek K, Komloova M, Holas O, Horova A, Pohanka M, Gunn-Moore F, Dohnal V, Dolezal M, Kuča K (2011) Bioorg Med Chem 19:754–762

    Article  CAS  Google Scholar 

  20. Musilek K, Holas O, Komloova M, Zdarova JK, Pohanka M, Kuča K (2010) Main Group Chem 9:355–361

    CAS  Google Scholar 

  21. Karasova JZ, Kvetina J, Tacheci I, Radochova V, Musilek K, Kuča K, Bures J (2017) Toxicol Lett 273:20–25

    Article  CAS  Google Scholar 

  22. Spicakova A, Anzenbacher P, Liskova B, Kuča K, Fusek J, Anzenbacherova E (2016) Food Chem Toxicol 88:100–104

    Article  CAS  Google Scholar 

  23. Kovarik Z, Vrdoljak AL, Berend S, Katalinic M, Kuča K, Musilek K, Radic B (2009) Arh Hig Rada Toksikol 60:19–26

    Article  CAS  Google Scholar 

  24. Zdarova JK, Hnidkova D, Pohanka M, Musilek K, Chilcott RP, Kuča K (2012) J Appl Biomed 10:71–78

    Article  Google Scholar 

  25. Sahu AK, Sharma R, Gupta B, Musilek K, Kuča K, Acharya J, Ghosh KK (2016) Toxicol Mech Methods 26(5):319–326

    Article  CAS  Google Scholar 

  26. Kuča K, Bielavský J, Cabal J, Bielavská M (2003) Tetrahedron Lett 44:3123–3125

    Article  Google Scholar 

  27. Poziomek EJ, Hackley BE, Steinberg GM (1958) J Org Chem 23:714–717

    Article  CAS  Google Scholar 

  28. Rousseaux CG, Dua AK (1989) Can J Physiol Pharmacol 67:1183–1189

    Article  CAS  Google Scholar 

  29. Kassa J, Cabal J, Bajgar J, Szinicz L (1997) ASA Newslett 97:16–18

    Google Scholar 

  30. J Kassa (2002) Acta Med 45:75–78

    CAS  Google Scholar 

  31. Kuča K, Cabal J (2004) Cent Eur J Public Health 12:S59–S61

    Google Scholar 

  32. Kim TH, Kuča K, Jun D, Jung Y-S (2005) Bioorg Med Chem Lett 15:2914–2917

    Article  CAS  Google Scholar 

  33. Ćalić M, Vrdoljak AL, Radić B, Jelić D, Jun D, Kuča K, Kovarik Z (2006) Toxicology 219:85–96

    Article  Google Scholar 

  34. Kassa J, Karasova J, Musilek K, Kuča K, Jung Y-S (2008) Drug Chem Toxicol 31:371–381

    Article  CAS  Google Scholar 

  35. Matos SK, Cunha EFFda, Gonçalves AdS, Wilter A, Kuča K, França TCC, Ramalho TC (2012) J Biomol Struct Dyn 30:546–558

    Article  CAS  Google Scholar 

  36. Herkert NM, Thiermann H, Worek F (2011) Toxicol Lett 206:41–46

    Article  CAS  Google Scholar 

  37. Chandar NB, Ghosh S, Lo R, Banjo S, Ganguly B (2015) Chem-Biol Interact 242:299–306

    Article  CAS  Google Scholar 

  38. Carletti E, Colletier J-P, Dupeux F, Trovaslet M, Masson P, Nachon F (2010) J Med Chem 53:4002–4008

    Article  CAS  Google Scholar 

  39. Ekström FJ, Astot C, Pang YP (2007) Clin Pharmacol Ther 82:282–293

    Article  Google Scholar 

  40. Mohamadi F, Richard NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467

    Article  CAS  Google Scholar 

  41. Musilek K, Holas O, Jun D, Gunn-Moore FJ, Dohnal V, Opletalova V, Dolezala M, Kuča K (2007) Bioorg Med Chem 15:6733–6741

    Article  CAS  Google Scholar 

  42. Lee DJ, Setiadi DH, Csizmadia IG (2008) J Undergrad Life Sci 220–25

    Google Scholar 

  43. Csizmadia IG (1976) Theory and practice of MO calculations on organic molecules. Elsevier Scientific Publishing Company, New York, p 93

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Revision B01. Gaussian Inc, Wallingford

    Google Scholar 

  45. Autodock, Version 4.2 ed. (2007) The Scripps Research Institute, La Jolla

  46. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Nat Protoc 11:905–919

    Article  CAS  Google Scholar 

  47. GROMACS 4.6.3 program package, freely available from the GROMACS Website

  48. Sahu D, Ganguly B (2016) ChemistrySelect 1:3762–3769

    Article  CAS  Google Scholar 

  49. Berendsen HJC, Postma JPM, Gunsteren WFvan, Hermans J (1981) Interaction models for water in relation to protein hydration. Springer, Dordrecht, p 331–342

    Google Scholar 

  50. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  51. Li R, Fan J, Li H, Yan X, Yu Y (2013) J Phys Chem B 117:14916–14927

    CAS  Google Scholar 

  52. Kesharwani MK, Ganguly B, Das A, Bandyopadhyay T (2010) Acta Pharmacol Sin 31:313–328

    Article  CAS  Google Scholar 

  53. Lo R, Ganguly B (2014) Mol BioSyst 10:2368–2383

    Article  CAS  Google Scholar 

  54. Yang K, Liu X, Wang X, Jiang H (2009) Biochem Biophys Res Commun 379:494–498

    Article  CAS  Google Scholar 

  55. van der Spoel D, Lindahl E, Hess B, GROMACS development team (2013) GROMACS user manual version 4.6.3, http://www.gromacs.org

  56. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  57. Morfill J, Neumann J, Blank K, Steinbach U, Puchner EM, Gottschalk KE (2008) J Mol Biol 381:1253–1266

    Article  CAS  Google Scholar 

  58. Heymann B, Grubmüller H (2000) Phys Rev Lett 84:6126–6129

    Article  CAS  Google Scholar 

  59. Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K (1999) Nature 402:100–103

    Article  CAS  Google Scholar 

  60. Cheng F, Shen J, Luo X, Jiang H, Chen K (2002) Biophys J 83:753–762

    Article  CAS  Google Scholar 

  61. Isralewitz B, Gao M, Schulten K (2001) Curr Opin Struct Biol 11:224–230

    Article  CAS  Google Scholar 

  62. Kumari R, Kumar R, Lynn A (2014) J Chem Inf Model 54:1951–1962

    Article  CAS  Google Scholar 

  63. Vashisht K, Verma S, Gupta S, Lynn AM, Dixit R, Mishra N, Valecha N, Pandey KC (2017) Biochemistry 56:534–542

    Article  CAS  Google Scholar 

  64. Musilek K, Kuča K, Jun D, Dohnal V, Dolezal M (2005) J Enzym Inhib Med Chem 20:409–415

    Article  CAS  Google Scholar 

  65. Musilek K, Holas O, Kuča K, Jun D, Dohnal V, Dolezal M (2007) J Enzym Inhib Med Chem 22:425–432

    Article  CAS  Google Scholar 

  66. Musilek K, Holas O, Misik J, Pohanka M, Novotny L, Dohnal V, Opletalova V, Kuča K (2010) ChemMedChem 5:247–254

    Article  CAS  Google Scholar 

  67. Burgen AS (1981) Fed Proc 40:2723–2728

    CAS  Google Scholar 

  68. Tollenaere JP, Janssen PAJ (1988) Med Res Rev 8:1–25

    Article  CAS  Google Scholar 

  69. Šinko G, Brglez J, Kovarik Z (2010) Chem-Biol Interact 187:172–176

    Article  Google Scholar 

  70. Šinko G, Čalić M, Kovarik Z (2006) FEBS Lett 580:3167–3172

    Article  Google Scholar 

  71. Kovarik Z, Čalić M, Bosak A, Šinko G, Jelić D (2008) Croat Chem Acta 81:47–57

    CAS  Google Scholar 

  72. Moss GP (1996) Pure Appl Chem 68:2193–2222

    Article  CAS  Google Scholar 

  73. Hu X-G, Lawer A, Peterson MB, Iranmanesh H, Ball GE, Hunter L (2016) Org Lett 18:662–665

    Article  CAS  Google Scholar 

  74. Karasova JZ, Kassa J, Jung Y-S, Musilek K, Pohanka M, Kuča K (2008) Int J Mol Sci 9:2243–2252

    Article  Google Scholar 

  75. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Disc 3:935–949

    Article  CAS  Google Scholar 

  76. Chandar NB, Lo R, Ganguly B (2014) Chem-Biol Interact 223:58–68

    Article  CAS  Google Scholar 

  77. Worek F, Wille T, Koller M, Thiermann H (2013) Chem-Biol Interact 203:77–80

    Article  Google Scholar 

  78. Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P (2004) Biochemistry 43:3222–3229

    Article  CAS  Google Scholar 

  79. Katalinić M, Kovarik Z (2012) Croat Chem Acta 85:209–212

    Article  Google Scholar 

  80. Agrawal N, Skelton AA (2016) ACS Chem Neurosci 7:1433–1441

    Article  CAS  Google Scholar 

  81. Chen Q, Wang X, Shi W, Yu H, Zhang X, Giesy JP (2016) Environ Sci Technol 50:12429–12438

    Article  CAS  Google Scholar 

  82. Hassanzadeh M, Bagherzadeh K, Amanlou M (2016) J Mol Graph Model 70:170–180

    Article  CAS  Google Scholar 

  83. Musilek K, Kucera J, Jun D, Dohnal V, Opletalova V, Kuča K (2008) Bioorg Med Chem 16:8218–8223

    Article  CAS  Google Scholar 

  84. Worek F, Wille T, Aurbek N, Eyer P, Thiermann H (2010) Toxicol Appl Pharmacol 249:231–237

    Article  CAS  Google Scholar 

  85. Lo R, Chandar NB, Ghosh S, Ganguly B (2016) Mol BioSyst 12:1224–1231

    Article  CAS  Google Scholar 

  86. Ekström F, Pang Y-P, Boman M, Artursson E, Akfur C, Bérjegren S (2006) Biochem Pharmacol 72:597–607

    Article  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI Registration No: 122/2016. Shibaji Ghosh acknowledges AcSIR and CSIR-CSMCRI for providing him the opportunity for the doctoral research program. NBC is thankful to CSIR New Delhi, India for awarding him senior research fellowship and AcSIR for providing him the opportunity for the doctoral program. KJ is thankful to UGC New Delhi, India for awarding him senior research fellowship and AcSIR for providing him the opportunity for the doctoral program. BG thanks (MSM, SIP, CSIR, New Delhi) and Department of Atomic Energy-Board of Research in Nuclear Sciences, Mumbai for financial support. We thank Dr. Suman Chakrabarty and Dr. Tushar Bandyopadhyay for helpful discussion. We are also thankful to the reviewer for valuable suggestions and comments that have helped us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajit Ganguly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13399 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Chandar, N.B., Jana, K. et al. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. J Comput Aided Mol Des 31, 729–742 (2017). https://doi.org/10.1007/s10822-017-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0036-3

Keywords

Navigation