Skip to main content

Advertisement

Log in

Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tanrikulu Y, Krüger B, Proschak E (2013) The holistic integration of virtual screening in drug discovery. Drug Discov Today 18:358–364

    Article  Google Scholar 

  2. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  3. Kumar A, Zhang KYJ (2015) Hierarchical virtual screening approaches in small molecule drug discovery. Methods 71:26–37

    Article  CAS  Google Scholar 

  4. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860

    Article  CAS  Google Scholar 

  5. Muegge I (2008) Synergies of virtual screening approaches. Mini Rev Med Chem 8:927–933

    Article  CAS  Google Scholar 

  6. Muegge I, Oloff S (2006) Advances in virtual screening. Drug Discov Today Technol 3:405–411

    Article  Google Scholar 

  7. Drwal MN, Griffith R (2013) Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 10:e395–e401

    Article  Google Scholar 

  8. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  Google Scholar 

  9. Sukumar N, Das S (2011) Current trends in virtual high throughput screening using ligand-based and structure-based methods. Comb Chem High Throughput Screen 14:872–888

    Article  CAS  Google Scholar 

  10. Fukunishi Y (2009) Structure-based drug screening and ligand-based drug screening with machine learning. Comb Chem High Throughput Screen 12:397–408

    Article  CAS  Google Scholar 

  11. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204

    Article  CAS  Google Scholar 

  12. Bender A, Mussa HY, Glen RC, Reiling S (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44:1708–1718

    Article  CAS  Google Scholar 

  13. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  Google Scholar 

  14. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Article  CAS  Google Scholar 

  15. Golovin A, Henrick K (2009) Chemical substructure search in SQL. J Chem Inf Model 49:22–27

    Article  CAS  Google Scholar 

  16. Ehrlich HC, Henzler AM, Rarey M (2013) Searching for recursively defined generic chemical patterns in nonenumerated fragment spaces. J Chem Inf Model 53:1676–1688

    Article  CAS  Google Scholar 

  17. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553

    Article  CAS  Google Scholar 

  18. Güner OF, Bowen JP (2014) Setting the record straight: the origin of the pharmacophore concept. J Chem Inf Model 54:1269–1283

    Article  Google Scholar 

  19. Horvath D (2011) Pharmacophore-based virtual screening. In: Bajorath J (ed) Chemoinformatics and computational chemical biology. Humana Press, Totowa, pp 261–298. doi:10.1007/978-1-60761-839-3_11

    Google Scholar 

  20. Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886

    Article  CAS  Google Scholar 

  21. Finn PW, Morris GM (2013) Shape-based similarity searching in chemical databases. Wiley Interdiscip Rev Comput Mol Sci 3:226–241

    Article  CAS  Google Scholar 

  22. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  Google Scholar 

  23. Armstrong MS, Morris G, Finn P, Sharma R, Moretti L, Cooper R, Richards WG (2010) ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics. J Comput Aided Mol Des 24:789–801

    Article  CAS  Google Scholar 

  24. Vainio MJ, Puranen JS, Johnson MS (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model 49:492–502

    Article  CAS  Google Scholar 

  25. Berenger F, Voet A, Lee X, Zhang K (2014) A rotation–translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening. J Cheminform 6:23

    Article  Google Scholar 

  26. Nicholls A, Grant JA (2005) Molecular shape and electrostatics in the encoding of relevant chemical information. J Comput Aided Mol Des 19:661–686

    Article  CAS  Google Scholar 

  27. Simonin C, Awale M, Brand M, van Deursen R, Schwartz J, Fine M, Kovacs G, Hafliger P, Gyimesi G, Sithampari A, Charles RP, Hediger MA, Reymond JL (2015) Optimization of TRPV6 calcium channel inhibitors using a 3D ligand-based virtual screening method. Angew Chem Int Ed Engl 54:14748–14752

    Article  CAS  Google Scholar 

  28. Chen Y, Liu ZL, Fu TM, Li W, Xu XL, Sun HP (2015) Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorg Med Chem Lett 25:3442–3446

    Article  CAS  Google Scholar 

  29. Hevener KE, Mehboob S, Su PC, Truong K, Boci T, Deng J, Ghassemi M, Cook JL, Johnson ME (2012) Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. J Med Chem 55:268–279

    Article  CAS  Google Scholar 

  30. Kumar A, Ito A, Hirohama M, Yoshida M, Zhang KY (2016) Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping. Bioorg Med Chem Lett 26:1218–1223

    Article  CAS  Google Scholar 

  31. Kumar A, Ito A, Takemoto M, Yoshida M, Zhang KY (2014) Identification of 1,2,5-oxadiazoles as a new class of SENP2 inhibitors using structure based virtual screening. J Chem Inf Model 54:870–880

    Article  CAS  Google Scholar 

  32. Wiggers HJ, Rocha JR, Fernandes WB, Sesti-Costa R, Carneiro ZA, Cheleski J, da Silva AB, Juliano L, Cezari MH, Silva JS, McKerrow JH, Montanari CA (2013) Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl Trop Dis 7:e2370

    Article  Google Scholar 

  33. Kaserer T, Rigo R, Schuster P, Alcaro S, Sissi C, Schuster D (2016) Optimized virtual screening workflow for the identification of novel G-Quadruplex ligands. J Chem Inf Model 56:484–500

    Article  CAS  Google Scholar 

  34. Kumar A, Zhang KY (2016) Application of shape similarity in pose selection and virtual screening in CSARdock2014 exercise. J Chem Inf Model 56:965–973

    Article  CAS  Google Scholar 

  35. Anighoro A, Bajorath J (2016) Three-dimensional similarity in molecular docking: prioritizing ligand poses on the basis of experimental binding modes. J Chem Inf Model 56:580–587

    Article  CAS  Google Scholar 

  36. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55:1771–1780

    Article  CAS  Google Scholar 

  37. Wu G, Vieth M (2004) SDOCKER: a method utilizing existing X-ray structures to improve docking accuracy. J Med Chem 47:3142–3148

    Article  CAS  Google Scholar 

  38. Fukunishi Y, Nakamura H (2008) Prediction of protein–ligand complex structure by docking software guided by other complex structures. J Mol Graph Model 26:1030–1033

    Article  CAS  Google Scholar 

  39. Fukunishi Y, Nakamura H (2012) Integration of ligand-based drug screening with structure-based drug screening by combining maximum volume overlapping score with ligand docking. Pharmaceuticals (Basel) 5:1332–1345

    Article  CAS  Google Scholar 

  40. Huang SY, Li M, Wang J, Pan Y (2016) HybridDock: a hybrid protein–ligand docking protocol integrating protein- and ligand-based approaches. J Chem Inf Model 56:1078–1087

    Article  CAS  Google Scholar 

  41. Roy A, Srinivasan B, Skolnick J (2015) PoLi: a virtual screening pipeline based on template pocket and ligand similarity. J Chem Inf Model 55:1757–1770

    Article  CAS  Google Scholar 

  42. Kumar A, Zhang KY (2016) A pose prediction approach based on ligand 3D shape similarity. J Comput Aided Mol Des 30:457–469

    Article  CAS  Google Scholar 

  43. Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model 53:1853–1870

    Article  CAS  Google Scholar 

  44. Dunbar JB Jr, Smith RD, Damm-Ganamet KL, Ahmed A, Esposito EX, Delproposto J, Chinnaswamy K, Kang YN, Kubish G, Gestwicki JE, Stuckey JA, Carlson HA (2013) CSAR data set release 2012: ligands, affinities, complexes, and docking decoys. J Chem Inf Model 53:1842–1852

    Article  CAS  Google Scholar 

  45. Smith RD, Dunbar JB Jr, Ung PM, Esposito EX, Yang CY, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 51:2115–2131

    Article  CAS  Google Scholar 

  46. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24:259–279

    Article  CAS  Google Scholar 

  47. Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des 28:327–345

    Article  CAS  Google Scholar 

  48. Skillman AG (2012) SAMPL3: blinded prediction of host-guest binding affinities, hydration free energies, and trypsin inhibitors. J Comput Aided Mol Des 26:473–474

    Article  CAS  Google Scholar 

  49. Carlson HA, Smith RD, Damm-Ganamet KL, Stuckey JA, Ahmed A, Convery MA, Somers DO, Kranz M, Elkins PA, Cui G, Peishoff CE, Lambert MH, Dunbar JB Jr (2016) CSAR 2014: a benchmark exercise using unpublished data from pharma. J Chem Inf Model 56:1063–1077

    Article  CAS  Google Scholar 

  50. Kumar A, Zhang KY (2013) Investigation on the effect of key water molecules on docking performance in CSARdock exercise. J Chem Inf Model 53:1880–1892

    Article  CAS  Google Scholar 

  51. Kumar A, Zhang KY (2012) Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J Comput Aided Mol Des 26:603–616

    Article  CAS  Google Scholar 

  52. Voet AR, Kumar A, Berenger F, Zhang KY (2014) Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des 28:363–373

    Article  CAS  Google Scholar 

  53. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  54. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  Google Scholar 

  55. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268

    Article  CAS  Google Scholar 

  56. Hawkins PC, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52:2919–2936

    Article  CAS  Google Scholar 

  57. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584

    Article  CAS  Google Scholar 

  58. OMEGA 2.5.1.4: OpenEye Scientific Software, Santa Fe. http://www.eyesopen.com

  59. Hawkins PCD, Skillman AG, Nicholls A (2006) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  Google Scholar 

  60. ROCS 3.2.0.4: OpenEye Scientific Software, Santa Fe. http://www.eyesopen.com

  61. Rogers DJ, Tanimoto TT (1960) A computer program for classifying plants. Science 132:1115–1118

    Article  CAS  Google Scholar 

  62. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6:e20161

    Article  CAS  Google Scholar 

  63. Bower MJ, Cohen FE, Dunbrack RL Jr (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 267:1268–1282

    Article  CAS  Google Scholar 

  64. Dunbrack RL Jr, Karplus M (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 230:543–574

    Article  CAS  Google Scholar 

  65. Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  CAS  Google Scholar 

  66. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  67. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755

    Article  CAS  Google Scholar 

  68. Good AC, Liu J, Hirth B, Asmussen G, Xiang Y, Biemann HP, Bishop KA, Fremgen T, Fitzgerald M, Gladysheva T, Jain A, Jancsics K, Metz M, Papoulis A, Skerlj R, Stepp JD, Wei RR (2012) Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design. J Med Chem 55:2641–2648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Hokusai Great Wave supercomputer at RIKEN for the supercomputing resources used in this study. We acknowledge RIKEN Pioneering Project in Dynamic Structural Biology for funding. We thank members of our lab for help and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Y. J. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Zhang, K.Y.J. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. J Comput Aided Mol Des 30, 685–693 (2016). https://doi.org/10.1007/s10822-016-9931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9931-2

Keywords

Navigation