Skip to main content
Log in

Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dixit A, Saxena AK (2008) Eur J Med Chem 43(1):73

    Article  CAS  Google Scholar 

  2. Rathi L, Kashaw SK, Dixit A, Pandey G, Saxena AK (2004) Bioorg Med Chem 12(1):63

    Article  CAS  Google Scholar 

  3. Reaven G (2005) Circulation 112(20):3030

    Article  Google Scholar 

  4. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2008) Chem Biol Drug Des 72(4):257

    Article  CAS  Google Scholar 

  5. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2009) Mini Rev Med Chem 9(9):1075

    Article  CAS  Google Scholar 

  6. Huang HJ, Lee KJ, Yu HW, Chen HY, Tsai FJ, Chen CY (2010) J Biomol Struct Dyn 28(2):187

    Article  CAS  Google Scholar 

  7. Iwata Y, Miyamoto S, Takamura M, Yanagisawa H, Kasuya A (2001) J Mol Graph Model 19(6):536

    Article  CAS  Google Scholar 

  8. Khanna S, Sobhia ME, Bharatam PV (2005) J Med Chem 48(8):3015

    Article  CAS  Google Scholar 

  9. Kumar PM, Hemalatha R, Mahajan SC, Karthikeyan C, Moorthy NS, Trivedi P (2008) Med Chem 4(3):273

    Article  CAS  Google Scholar 

  10. Kurogi Y (1999) Drug Des Discov 16(2):109

    CAS  Google Scholar 

  11. Lather V, Kairys V, Fernandes MX (2009) Chem Biol Drug Des 73(4):428

    Article  CAS  Google Scholar 

  12. Liao C, Xie A, Zhou J, Shi L, Li Z, Lu XP (2004) J Mol Model 10(3):165

    Article  CAS  Google Scholar 

  13. Rucker C, Scarsi M, Meringer M (2006) Bioorg Med Chem 14(15):5178

    Article  Google Scholar 

  14. Salam NK, Huang TH, Kota BP, Kim MS, Li Y, Hibbs DE (2008) Chem Biol Drug Des 71(1):57

    Article  CAS  Google Scholar 

  15. Sundriyal S, Bharatam PV (2009) Eur J Med Chem 44(1):42

    Article  CAS  Google Scholar 

  16. Sundriyal S, Viswanad B, Bharathy E, Ramarao P, Chakraborti AK, Bharatam PV (2008) Bioorg Med Chem Lett 18(11):3192

    Article  CAS  Google Scholar 

  17. Issemann I, Green S (1990) Nature 347(6294):645

    Article  CAS  Google Scholar 

  18. Vedani A, Descloux AV, Spreafico M, Ernst B (2007) Toxicol Lett 173(1):17

    Article  CAS  Google Scholar 

  19. Barish GD, Narkar VA, Evans RM (2006) J Clin Invest 116(3):590

    Article  CAS  Google Scholar 

  20. Brown JD, Plutzky J (2007) Circulation 115(4):518

    Article  CAS  Google Scholar 

  21. Youssef J, Badr M (2004) J Biomed Biotechnol 2004(3):156

    Article  Google Scholar 

  22. Simo R, Rodriguez A, Caveda E (2010) Curr Drug Saf 5(3):234

    Article  CAS  Google Scholar 

  23. Stahl M, Guba W, Kansy M (2006) Drug Discov Today 11(7–8):326

    Article  CAS  Google Scholar 

  24. Huang CM, Elmets CA, Tang DC, Li F, Yusuf N (2004) Genomics Proteomics Bioinform 2(3):143

    CAS  Google Scholar 

  25. Desvergne B, Wahli W (1999) Endocr Rev 20(5):649

    CAS  Google Scholar 

  26. Gasteiger J, Teckentrup A, Terfloth L, Spycher S (2003) J Phys Org Chem 16(4):232

    Article  CAS  Google Scholar 

  27. Suh YG, Kim NJ, Koo BW, Lee KO, Moon SH, Shin DH, Jung JW, Paek SM, Chang DJ, Li F, Kang HJ, Le TV, Chae YN, Shin CY, Kim MK, Lim JI, Ryu JS, Park HJ (2008) J Med Chem 51(20):6318

    Article  CAS  Google Scholar 

  28. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2007) J Chromatogr B Analyt Technol Biomed Life Sci 857(2):181

    Article  CAS  Google Scholar 

  29. Scarsi M, Podvinec M, Roth A, Hug H, Kersten S, Albrecht H, Schwede T, Meyer UA, Rucker C (2007) Mol Pharmacol 71(2):398

    Article  CAS  Google Scholar 

  30. Wishart DS (2008) Pharmacogenomics 9(8):1155

    Article  CAS  Google Scholar 

  31. Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45(1):177

    Article  CAS  Google Scholar 

  32. Kirchmair J, Markt P, Distinto S, Schuster D, Spitzer GM, Liedl KR, Langer T, Wolber G (2008) J Med Chem 51(22):7021

    Article  CAS  Google Scholar 

  33. Cheng Y, Prusoff WH (1973) Biochem Pharmacol 22(23):3099

    Article  CAS  Google Scholar 

  34. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Nature 395(6698):137

    Article  CAS  Google Scholar 

  35. Han LY, Ma XH, Lin HH, Jia J, Zhu F, Xue Y, Li ZR, Cao ZW, Ji ZL, Chen YZ (2008) J Mol Graph Model 26(8):1276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education Academic Research Fund Tier 1 grant [R-148-000-165-112] to CWY. APK is supported by grants from the Singapore Ministry of Education Tier 2 [MOE2012-T2-2-139], Academic Research Fund Tier 1 [R-184-000-228-112], Cancer Science Institute of Singapore, Experimental Therapeutics I Program [Grant R-713-001-011-271], NUHS Bench-to-Beside-Product Grant [184-000-243-515] and John Nott Cancer Fellowship from Cancer Council, Western Australia. GS was supported by grants from National Medical Research Council of Singapore [R-184-000-211-213]. We would like to thank the two reviewers for their insightful and encouraging comments, which helped to improve the quality of our manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan Prem Kumar or Chun Wei Yap.

Additional information

Veronica M. W. Gee and Fiona S. L. Wong have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gee, V.M.W., Wong, F.S.L., Ramachandran, L. et al. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method. J Comput Aided Mol Des 28, 1143–1151 (2014). https://doi.org/10.1007/s10822-014-9791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9791-6

Keywords

Navigation