Skip to main content
Log in

Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We report the performance of a classical density functional theory (CDFT) in the competition for the solvation free-energy category of the SAMPL4 blind prediction event. The theoretical calculations were carried out with the TIP3P water model and different combinations of solute configurations and molecular force fields. In comparison with the experimental data, the blind test yields an average unsigned error of 2.38 kcal/mol and the root mean square deviation of 2.99 kcal/mol. Whereas these numbers are significantly larger than the best results from explicit-solvent MD simulations, we find that the theoretical performance is sensitive to both the molecular force fields and solute configurations and that a comparable level of accuracy can be achieved by a judicious selection of the solute configurations and the force-field parameters. Most importantly, CDFT reduces the computational cost of MD simulation by almost 3 orders of magnitude, making it very attractive for large-scale hydration free-energy calculations (e.g., screening the aqueous solubility of drug-like molecules).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chipot C, Pohorille A (2007) In: Study (ed) Free energy calculations: theory and applications in chemistry and biology. Springer, New York

  2. Hirata F (ed) (2003) Molecular theory of solvation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Ellingson BA, Geballe MT, Wlodek S, Bayly CI, Skillman AG, Nicholls A (2014) J Comput Aided Mol Des. doi:10.1007/s10822-014-9720-8

  4. Hawkins GD, Lynch GC, Chambers CC, Storer JW, Li J, Thompson JD, Winget P, Rinaldi D, Liotard DA, Cramer CJ, Truhlar DG (2003) AMSOL-version 7.0. University of Minnesota, Minneapolis

  5. Cramer CJ, Truhlar DG (1999) Chem Rev 99(8):2161

    Article  CAS  Google Scholar 

  6. Roux B, Simonson T (1999) Biophys Chem 78(1–2):1

    Article  CAS  Google Scholar 

  7. Wu J, Li Z (2007) Annu Rev Phys Chem 58:85

    Article  CAS  Google Scholar 

  8. Singer SJ, Chandler D (1985) Mol Phys 55(3):621

    Article  CAS  Google Scholar 

  9. Kinoshita M, Okamoto Y, Hirata F (1997) J Comput Chem 18(10):1320

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao S, Wu J (2013) J Chem Theory Comput 9(4):1896

    Article  CAS  Google Scholar 

  11. Mobley DL, Wymer KL, Lin NM, Guthrie JP (2014) J Comput Aided Mol Des. doi:10.1007/s10822-014-9718-2

  12. Guthrie JP (2014) J Comput Aided Mol Des. doi:10.1007/s10822-014-9738-y

  13. Liu Y, Fu J, Wu J (2013) J Phys Chem Lett 4(21):3687

    Article  CAS  Google Scholar 

  14. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  15. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  Google Scholar 

  16. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118(45):11225

    Article  CAS  Google Scholar 

  17. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623

    Article  CAS  Google Scholar 

  18. Breneman CM, Wiberg KB (1990) J Comput Chem 11(3):361

    Article  CAS  Google Scholar 

  19. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4(2):187

    Article  CAS  Google Scholar 

  20. Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J,.Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford, CT

  21. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26(16):1701

    Article  Google Scholar 

  22. Scalmani G, Frisch MJ (2010) J Chem Phys 132(11):114110

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored in part by the Department of Energy (DE-FG02-06ER46296) and the National Science Foundation (NSF-CBET-0852353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Liu, Y. & Wu, J. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory. J Comput Aided Mol Des 28, 299–304 (2014). https://doi.org/10.1007/s10822-014-9730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9730-6

Keywords

Navigation