Skip to main content

Advertisement

Log in

A fragment-based approach to the SAMPL3 Challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The success of molecular fragment-based design depends critically on the ability to make predictions of binding poses and of affinity ranking for compounds assembled by linking fragments. The SAMPL3 Challenge provides a unique opportunity to evaluate the performance of a state-of-the-art fragment-based design methodology with respect to these requirements. In this article, we present results derived from linking fragments to predict affinity and pose in the SAMPL3 Challenge. The goal is to demonstrate how incorporating different aspects of modeling protein–ligand interactions impact the accuracy of the predictions, including protein dielectric models, charged versus neutral ligands, ΔΔGs solvation energies, and induced conformational stress. The core method is based on annealing of chemical potential in a Grand Canonical Monte Carlo (GC/MC) simulation. By imposing an initially very high chemical potential and then automatically running a sequence of simulations at successively decreasing chemical potentials, the GC/MC simulation efficiently discovers statistical distributions of bound fragment locations and orientations not found reliably without the annealing. This method accounts for configurational entropy, the role of bound water molecules, and results in a prediction of all the locations on the protein that have any affinity for the fragment. Disregarding any of these factors in affinity-rank prediction leads to significantly worse correlation with experimentally-determined free energies of binding. We relate three important conclusions from this challenge as applied to GC/MC: (1) modeling neutral ligands—regardless of the charged state in the active site—produced better affinity ranking than using charged ligands, although, in both cases, the poses were almost exactly overlaid; (2) simulating explicit water molecules in the GC/MC gave better affinity and pose predictions; and (3) applying a ΔΔGs solvation correction further improved the ranking of the neutral ligands. Using the GC/MC method under a variety of parameters in the blinded SAMPL3 Challenge provided important insights to the relevant parameters and boundaries in predicting binding affinities using simulated annealing of chemical potential calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geballe M, Skillman G, Nicholls A (2011) Statistical assessment of the modeling of proteins and Ligands (SAMPL3) Challenge. http://sampl.eyesopen.com/

  2. Guarnieri F, Mezei M (1996) J Am Chem Soc 118(35):8493

    Article  CAS  Google Scholar 

  3. Kulp JL III, Kulp JL Jr, Pompliano DL, Guarnieri F (2011) J Am Chem Soc 133(28):10740

    Article  CAS  Google Scholar 

  4. Burger MT, Armstrong A, Guarnieri F, McDonald DQ, Still WC (1994) J Am Chem Soc 116:3593

    Article  CAS  Google Scholar 

  5. Guarnieri F, Still WC (1994) J Comput Chem 15:1302

    Article  CAS  Google Scholar 

  6. Guarnieri F (1995) J Math Chem 18:25

    Article  CAS  Google Scholar 

  7. Brandsdal BO, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, Åqvist J (2003) Free energy calculations and ligand binding. In: Valerie D (ed) Advances in protein chemistry, vol 66. Academic Press, p 123

  8. Simonson T, Archontis G, Karplus M (2002) Acc Chem Res 35:430

    Article  CAS  Google Scholar 

  9. Kroeger Smith MB, Hose BM, Hawkins A, Lipchock J, Farnsworth DW, Rizzo RC, Tirado-Rives J, Arnold E, Zhang W, Hughes SH, Jorgensen WL, Michejda CJ, Smith RH Jr (2003) J Med Chem 46(10):1940

    Article  CAS  Google Scholar 

  10. Kuhn B, Kollman PA (2000) J Med Chem 43(20):3786

    Article  CAS  Google Scholar 

  11. Pearlman DA (2005) J Med Chem 48(24):7796

    Article  CAS  Google Scholar 

  12. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912

    Article  CAS  Google Scholar 

  13. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49(20):5851

    Article  CAS  Google Scholar 

  14. Ichihara O, Barker J, Law RJ, Whittaker M (2011) Mol Inform 30(4):298

    Article  CAS  Google Scholar 

  15. Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT (2009) Nat Chem Biol 5(6):407

    Article  CAS  Google Scholar 

  16. Moumne R, Larue V, Seijo B, Lecourt T, Micouin L, Tisne C (2010) Org Biomol Chem 8(5):1154

    Article  CAS  Google Scholar 

  17. Bas DC, Rogers DM, Jensen JH (2008) Proteins Struct Function Bioinform 73(3):765

    Article  CAS  Google Scholar 

  18. Li H, Robertson AD, Jensen JH (2005) Proteins Struct Function Bioinform 61(4):704

    Article  CAS  Google Scholar 

  19. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(2):525

    Article  CAS  Google Scholar 

  20. Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(7):2284

    Article  Google Scholar 

  21. Xiang J (2002) JACKAL: a protein structure modeling package. Columbia University, New York

    Google Scholar 

  22. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285(4):1735

    Article  CAS  Google Scholar 

  23. Newman J, Fazio VJ, Caradoc-Davies TT, Branson K, Peat TS (2009) J Biomol Screen 14(10):1245

    Article  CAS  Google Scholar 

  24. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, 2nd edn, vol 1, Academic Press, New York

  25. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  26. Adams DJ (1975) Mol Phys 29:307

    Article  CAS  Google Scholar 

  27. Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph Model 25(2):247

    Article  Google Scholar 

  28. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  Google Scholar 

  29. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179

    Article  CAS  Google Scholar 

  30. Cramer CJ, Truhlar DG (2008) Acc Chem Res 41(6):760

    Article  CAS  Google Scholar 

  31. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14(11):1347

    Article  CAS  Google Scholar 

  32. Wang J, Wang W, Huo S, Lee M, Kollman PA (2001) J Phys Chem B 105(21):5055

    Article  CAS  Google Scholar 

  33. Boyer R, Bryan RL (2012) J Phys Chem B submitted for publication

  34. Guarnieri F, Weinstein H (1996) J Am Chem Soc 118(24):5580

    Article  CAS  Google Scholar 

  35. Guarnieri F, Wilson SR (1995) J Comput Chem 16(5):648

    Article  CAS  Google Scholar 

  36. Whitnell RM, Hurst DP, Reggio PH, Guarnieri F (2008) J Comput Chem 29(5):741

    Article  CAS  Google Scholar 

  37. The PyMOL Molecular Graphics System, Version 1.4, Schrödinger, LLC

Download references

Acknowledgments

We thank Dr. William Chiang, Dr. John L. Kulp Jr., and Dr. David L. Pompliano for helpful discussions and commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Kulp III.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1929 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulp, J.L., Blumenthal, S.N., Wang, Q. et al. A fragment-based approach to the SAMPL3 Challenge. J Comput Aided Mol Des 26, 583–594 (2012). https://doi.org/10.1007/s10822-012-9546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9546-1

Keywords

Navigation