Skip to main content
Log in

Modeling of peptides containing D-amino acids: implications on cyclization

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cyclic peptides are therapeutically attractive due to their high bioavailability, potential selectivity, and scaffold novelty. Furthermore, the presence of D-residues induces conformational preferences not followed by peptides consisting of naturally abundant L-residues. Therefore, comprehending how amino acids induce turns in peptides, subsequently facilitating cyclization, is significant in peptide design. Here, we performed 20-ns explicit-solvent molecular dynamics simulations for three diastereomeric peptides with stereochemistries: LLLLL, LLLDL, and LDLDL. Experimentally LLLLL and LDLDL readily cyclize, whereas LLLDL cyclizes in low yield. Simulations at 310 K produced conformations with inter-terminal hydrogen bonds that correlated qualitatively with the experimental cyclization trend. Energies obtained for representative structures from quantum chemical (B3LYP/PCM/cc-pVTZ//HF/6-31G*) calculations predicted pseudo-cyclic and extended conformations as the most stable for LLLLL and LLLDL, respectively, in agreement with the experimental data. In contrast, the most stable conformer predicted for peptide LDLDL was not a pseudo-cyclic structure. Moreover, D-residues preferred the experimentally less populated αL rotamers even when simulations were performed at a higher temperature and with strategically selected starting conformations. Energies calculated with molecular mechanics were consistent only with peptide LLLLL. Thus, the conformational preferences obtained for the all L-amino acid peptide were in agreement with the experimental observations. Moreover, refinement of the force field is expected to provide far-reaching conformational sampling of peptides containing D-residues to further develop force field-based conformational-searching methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Craik DJ (2006) Science 311:1563

    Article  Google Scholar 

  2. Goncalves V, Gautier B, Coric P, Bouaziz S, Lenoir C, Garbay C, Vidal M, Inguimbert N (2007) J Med Chem 50:5135

    Article  CAS  Google Scholar 

  3. Daly NL, Chen Y-K, Foley FM, Bansal PS, Bharathi R, Clark RJ, Sommerhoff CP, Craik DJ (2006) J Biol Chem 281:23668

    Article  CAS  Google Scholar 

  4. Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ (2008) Biopolymers 90:51

    Article  CAS  Google Scholar 

  5. Daly NL, Clark RJ, Plan MR, Craik DJ (2006) Biochem J 393:619

    Article  CAS  Google Scholar 

  6. Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Bioorg Med Chem 13:5145

    Article  CAS  Google Scholar 

  7. De Luca S, Saviano M, Della Moglie R, Digilio G, Bracco C, Aloj L, Tarallo L, Pedone C, Morelli G (2006) Chem Med Chem 1:997

    Google Scholar 

  8. Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman UH, Vepsalainen J, Narvanen A (2007) J Pept Sci 13:348

    Article  CAS  Google Scholar 

  9. Sun H, Greeley DN, Chu X-J, Cheung A, Danho W, Swistok J, Wang Y, Zhao C, Chen L, Fry DC (2004) Bioorg Med Chem 12:2671

    Article  CAS  Google Scholar 

  10. Korsinczky MLJ, Schirra HJ, Craik DJ (2004) Curr Protein Pept Sci 5:351

    Article  CAS  Google Scholar 

  11. Dooley CT, Chung NN, Wilkes BC, Schiller PW, Bidlack JM, Pasternak GW, Houghten RA (1994) Science 266:2019

    Article  CAS  Google Scholar 

  12. Houghten RA, Dooley CT, Appel JR (2006) AAPS Journal 8:E371

    Google Scholar 

  13. Davies JS (2003) J Pept Sci 9:471

    Article  CAS  Google Scholar 

  14. Jeremic T, Linden A, Moehle K, Heimgartner H (2005) Tetrahedron 61:1871

    Article  CAS  Google Scholar 

  15. Glaves R, Baer M, Schreiner E, Stoll R, Marx D (2008) Chem Phys Chem 9:2759

    CAS  Google Scholar 

  16. Ehrlich A, Heyne HU, Winter R, Beyermann M, Haber H, Carpino LA, Bienert M (1996) J Org Chem 61:8831

    Article  CAS  Google Scholar 

  17. Mitchell JBO, Smith J (2003) Proteins Struct Funct Genet 50:563

    Article  CAS  Google Scholar 

  18. Schweitzer-Stenner R, Gonzales W, Bourne GT, Feng JA, Marshall GR (2007) J Am Chem Soc 129:13095

    Article  CAS  Google Scholar 

  19. Terada T, Satoh D, Mikawa T, Ito Y, Shimizu K (2008) Proteins Struct Funct Bioinf 73:621

    Article  CAS  Google Scholar 

  20. Krautler V, Aemissegger A, Hunenberger PH, Hilvert D, Hansson T, van Gunsteren WF (2005) J Am Chem Soc 127:4935

    Article  Google Scholar 

  21. Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) J Pept Sci 14:769

    Google Scholar 

  22. Beck DAC, White GWN, Daggett V (2007) J Struct Biol 157:514

    Article  CAS  Google Scholar 

  23. Galzitskaya OV, Higo J, Finkelstein AV (2002) Curr Protein Pept Sci 3:191

    Article  CAS  Google Scholar 

  24. Cavelier-Frontin F, Pepe G, Verducci J, Siri D, Jacquier R (1992) J Am Chem Soc 114:8885

    Article  CAS  Google Scholar 

  25. Besser D, Olender R, Rosenfeld R, Arad O, Reissmann S (2000) J Pept Res 56:337

    Article  CAS  Google Scholar 

  26. Seibert MM, Patriksson A, Hess B, van der Spoel D (2005) J Mol Biol 354:173

    Article  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  Google Scholar 

  28. Mackerell ADJ, Feig M, Brooks CLI (2004) J Comput Chem 25:1400

    Article  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:27

    Google Scholar 

  30. Jorgensen WL, Swenson CJ (1985) J Am Chem Soc 107:569

    Article  CAS  Google Scholar 

  31. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale LV, Schulten K (2005) J Comput Chem 26:1781

    Article  CAS  Google Scholar 

  32. Darden T, York D, Pederson L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  33. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B,Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda J, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE,Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui A, Baboul AG, Clifford S, Cioslowshi J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) In: Gaussian, Inc, Wallingford, CT

  36. Li Y, Yu Y, Giulianotti M, Houghten RA (2008) J Comb Chem 10:613

    Article  CAS  Google Scholar 

  37. Li Y, Yongye A, Giulianotti M, Martinez-Mayorga K, Yu Y, Houghten R (2009) J Comb Chem (submitted)

  38. Schmidt U, Langner J (1997) J Pept Res 49:67

    CAS  Google Scholar 

  39. Chen Y, Mant CT, Hodges RS (2002) J Pept Res 59:18

    Article  CAS  Google Scholar 

  40. Durani S (2008) Acc Chem Res 41:1301

    Article  CAS  Google Scholar 

  41. Avbelj F, Moult J (1995) Biochemistry 34:755

    Article  CAS  Google Scholar 

  42. Mathews CK, van Holde EK, Ahern KG (2000) Biochemistry. Pearson Prentice Hall, USA

    Google Scholar 

Download references

Acknowledgments

This work was supported by the State of Florida, Executive Officer of the Governor’s Office of Tourism, Trade and Economic Development, and by the National Science Foundation (CHE0455072 to R. A. H.). Authors thank the University Of Georgia Research Computing Center for supercomputing time, and the Theoretical and Computational Biophysics Group UIUC for providing VMD and NAMD programs. We are thankful to the referees for helpful criticisms of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Martínez-Mayorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongye, A.B., Li, Y., Giulianotti, M.A. et al. Modeling of peptides containing D-amino acids: implications on cyclization. J Comput Aided Mol Des 23, 677–689 (2009). https://doi.org/10.1007/s10822-009-9295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9295-y

Keywords

Navigation