Skip to main content
Log in

Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of −OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Chart 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amara SG, Kuhar MJ (1993) Annu Rev Neurosci 16:73

    Article  CAS  Google Scholar 

  2. Laakso A, Hietala J (2000) Curr Pharm Des 6:1611

    Article  CAS  Google Scholar 

  3. Hahn MK, Blakely RD (2002) Pharmacogenomics J 2:217

    Article  CAS  Google Scholar 

  4. Heinz A, Mann K, Weinberger DR, Goldman D (2001) Alcohol Clin Exp Res 25:487

    Article  CAS  Google Scholar 

  5. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, Ordway GA (1997) J Neurosci 17:8451

    CAS  Google Scholar 

  6. Robertson D, Flattem N, Tellioglu T, Carson R, Garland E, Shannon JR, Jordan J, Jacob G, Blakely RD, Biaggioni I (2001) Ann N Y Acad Sci 940:527

    Article  CAS  Google Scholar 

  7. Miller GM, De La Garza R II, Novak MA, Madras BK (2001) Mol Psychiatry 6:50

    Article  CAS  Google Scholar 

  8. Ozaki N, Goldman D, Kaye WH, Plotnicov K, Greenberg BD, Lappalainen J, Rudnick G, Murphy DL (2003) Mol Psychiatry 8:933

    Article  CAS  Google Scholar 

  9. Nemeroff CB, Owens MJ (2002) Nat Neurosci 5:1068

    Article  CAS  Google Scholar 

  10. Dutta AK, Zhang S, Kolhatkar R, Reith MEA (2003) Eur J Pharmacol 479:93

    Article  CAS  Google Scholar 

  11. Olivier B, Soudijn W, van Wijngaarden I (2000) Prog Drug Res 54:59

    CAS  Google Scholar 

  12. Walter MW (2005) Drug Develop Res 65:97

    Article  CAS  Google Scholar 

  13. Miller DK, Wong EHF, Chesnut MD, Dwoskin LP (2002) J Pharmacol Exp Ther 302:687

    Article  CAS  Google Scholar 

  14. Scates AC, Doraiswamy PM (2000) Ann Pharmacother 34:1302

    Article  CAS  Google Scholar 

  15. Hajos M, Fleishaker JC, Filipiak-Reisner JK, Brown MT, Wong EHF (2004) CNS Drug Rev 10:23

    Article  CAS  Google Scholar 

  16. Koch S, Hemrick-Luecke SK, Thompson LK, Evans DC, Threlkeld PG, Nelson DL, Perry KW, Bymaster FP (2003) Neuropharmacology 45:935

    Article  CAS  Google Scholar 

  17. Thase ME, Entsuah AR, Rudolph RL (2001) Br J Psychiatry 178:234

    Article  CAS  Google Scholar 

  18. Zhang S, Reith MEA, Dutta AK (2003) Bioorg Med Chem Lett 13:591

    Google Scholar 

  19. Zhang S, Zhen J, Reith MEA, Dutta AK (2004) Bioorg Med Chem 12:6301

    Article  CAS  Google Scholar 

  20. Zhang S, Zhen J, Reith MEA, Dutta AK (2005) J Med Chem 48:4962

    Article  CAS  Google Scholar 

  21. Zhang S, Fernandez F, Hazeldine S, Deschamps J, Zhen J, Reith MEA, Dutta AK (2006) J Med Chem 49:4239

    Article  CAS  Google Scholar 

  22. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  23. Vogel AI (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Longman, Harlow

    Google Scholar 

  24. SYBYL Molecular Modeling System, Version 7.1, Tripos Inc., St. Louis, MO 63144–2913

  25. Wong G, Koehler KF, Skolnick P, Gu ZQ, Ananthan S Schonholzer P, Hunkeler W, Zhang W, Cook JM (1993) J Med Chem 36:1820

    Article  CAS  Google Scholar 

  26. Matter H, Schwab W (1999) J Med Chem 42:4506

    Article  CAS  Google Scholar 

  27. Böhm M, Stürzebecher J, Klebe G (1999) J Med Chem 42:458

    Article  Google Scholar 

  28. Clark M, Cramer RD III, Van Opdenbosh N (1989) J Comput Chem 10:982

    Article  CAS  Google Scholar 

  29. Stewart JJP (1990) J Comput-Aided Mol Des 4:1

    Article  Google Scholar 

  30. Dunn WJ, Wold S, Edelund U, Helberg S (1984) Quant Struct-Act Relat 3:131

    Article  CAS  Google Scholar 

  31. Cramer RD III, Bunce J, Patterson DE (1988) Quant Struct-Act Relat 7:18

    Article  Google Scholar 

  32. van de Waterbeemd H, Testa B, Folkers G (eds) (1997) Computer-Assisted Lead Finding and Optimization, Verlag Helvetica Chimica Acta (VHCA). Basel and Wiley–VHC, Weinheim, pp 445–459

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Drug Abuse, Grant No. DA 12449 (AKD). We acknowledge Stuart Hazeldine for his help with the synthesis and Juan Zhen for her help with the biological characterization of compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloke K. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharkar, P.S., Reith, M.E.A. & Dutta, A.K. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors. J Comput Aided Mol Des 22, 1–17 (2008). https://doi.org/10.1007/s10822-007-9146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9146-7

Keywords

Navigation