Skip to main content
Log in

Using Theorem Proving to Verify Expectation and Variance for Discrete Random Variables

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Statistical quantities, such as expectation (mean) and variance, play a vital role in the present age probabilistic analysis. In this paper, we present some formalization of expectation theory that can be used to verify the expectation and variance characteristics of discrete random variables within the HOL theorem prover. The motivation behind this is the ability to perform error free probabilistic analysis, which in turn can be very useful for the performance and reliability analysis of systems used in safety-critical domains, such as space travel, medicine and military. We first present a formal definition of expectation of a function of a discrete random variable. Building upon this definition, we formalize the mathematical concept of variance and verify some classical properties of expectation and variance in HOL. We then utilize these formal definitions to verify the expectation and variance characteristics of the Geometric random variable. In order to demonstrate the practical effectiveness of the formalization presented in this paper, we also present the probabilistic analysis of the Coupon Collector’s problem in HOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I., Ahn, H., Karp, R.M., Ross, S.M.: Coalescing times for IID random variables with applications to population biology. Random Struct. Algorithms 23(2), 155–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., Halperin, E., Karp, R.M., Vazirani, V.V.: A stochastic process on the hypercube with applications to peer-to-peer networks. In: Proc. 35th Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM, New York (2003)

    Google Scholar 

  3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in coq. In: Mathematics of Program Construction. LNCS, vol. 4014, pp 49–68. Springer, New York (2006)

    Chapter  Google Scholar 

  4. Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. Springer, New York (1987)

    Google Scholar 

  5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking algorithms for continuous time markov chains. IEEE Trans. Softw. Eng. 29(4), 524–541 (2003)

    Article  Google Scholar 

  6. Bialas, J.: The σ-additive measure theory. J. Formaliz. Math. 2 (1990)

  7. Billingsley, P.: Probability and Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  8. Celiku, O.: Quantitative temporal logic mechanized in HOL. In: Theoretical Aspects of Computing. LNCS, vol. 3722, pp. 439–453. Springer, New York (2005)

    Google Scholar 

  9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT, Cambridge (2000)

    Google Scholar 

  10. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  11. DeGroot, M.: Probability and Statistics. Addison-Wesley, Reading (1989)

    Google Scholar 

  12. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    MATH  Google Scholar 

  13. Dimitrov, N.B., Plaxton, C.G.: Optimal cover time for a graph-based coupon collector process. In: Automata, Languages and Programming. LNCS, vol. 3580, pp. 702–716. Springer, New York (2005)

    Google Scholar 

  14. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  15. Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  16. Harrison, J.: Theorem Proving with the Real Numbers. Springer, New York (1998)

    MATH  Google Scholar 

  17. Hurd, J., McIver, A., Morgan, C.: Probabilistic Guarded Commands Mechanized in HOL. Theor. Comp. Sci. 346, 96–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hasan, O., Tahar, S.: Formalization of the continuous probability distributions. In: Automated Deduction. LNAI, vol. 4603, pp. 3–18. Springer, New York (2007)

    Google Scholar 

  19. Hasan, O., Tahar, S.: Verification of expectation properties for discrete random variables in HOL. In: Theorem Proving in Higher-Order Logics. LNCS, vol. 4732, pp. 119–134. Springer, New York (2007)

    Chapter  Google Scholar 

  20. Hasan, O., Tahar, S.: Verification of probabilistic properties in HOL using the cumulative distribution function. In: Integrated Formal Methods. LNCS, vol. 4591, pp. 333–352. Springer, New York (2007)

    Chapter  Google Scholar 

  21. Hurd, J.: Formal verification of probabilistic algorithms. PhD Thesis, University of Cambridge, Cambridge (2002)

  22. Khazanie, R.: Basic Probability Theory and Applications. Goodyear, Los Angeles (1976)

    Google Scholar 

  23. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Probabilistic Model Checker PRISM. Electron Notes Theor Comp Sci Elsevier 153(2), 5–31 (2005)

    Article  Google Scholar 

  24. Levine, A.: Theory of Probability. Addison-Wesley Series in Behavioral Science, Quantitative Methods. Addison-Wesley, Reading (1971)

    MATH  Google Scholar 

  25. Leon Garcia, A., Widjaja, I.: Communication Networks: Fundamental Concepts and Key Architectures. McGraw-Hill, New York (2004)

    Google Scholar 

  26. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  27. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 348–375 (1977)

    Article  MathSciNet  Google Scholar 

  28. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  29. Nedzusiak, A.: σ-fields and Probability. J. Formaliz. Math. 1 (1989)

  30. Paulson, L.C.: Isabelle: A Generic Theroem Prover, vol. 828 of LNCS. Springer, New York (1994)

    Google Scholar 

  31. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  32. Richter, S.: Formalizing integration theory, with an application to probabilistic algorithms. Diploma Thesis, Technische Universitat Munchen, Department of Informatics, Germany (2003)

  33. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilisitc Systems, Volume 23 of CRM Monograph Series. American Mathematical Society, Providence (2004)

    Google Scholar 

  34. Stirzaker, D.: Elementary Probability. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  35. Sen, K., Viswanathan, M., Agha, G.: VESTA: a statistical model-checker and analyzer for probabilistic systems. In: Proc. IEEE International Conference on the Quantitative Evaluation of Systems, pp. 251–252. IEEE, Piscataway (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, O., Tahar, S. Using Theorem Proving to Verify Expectation and Variance for Discrete Random Variables. J Autom Reasoning 41, 295–323 (2008). https://doi.org/10.1007/s10817-008-9113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-008-9113-6

Keywords

Navigation