Skip to main content

Advertisement

Log in

Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Expression of the embryonic poly(A)-binding protein (EPAB) in frog, mouse, and human oocytes and early-stage embryos is maintained at high levels until embryonic genome activation (EGA) after which a significant decrease occurs in EPAB levels. Studies on the vertebrate oocytes and early embryos revealed that EPAB plays key roles in the translational regulation, stabilization, and protection of maternal mRNAs during oocyte maturation and early embryogenesis. However, it remains elusive whether EPAB interacts with other cellular proteins and undergoes phosphorylation to perform these roles. For this purpose, we identified a group of Epab-interacting proteins and its phosphorylation status in mouse germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, and in 1-cell, 2-cell, and 4-cell preimplantation embryos. In the oocytes and early preimplantation embryos, Epab-interacting proteins were found to play roles in the translation and transcription processes, intracellular signaling and transport, maintenance of structural integrity, metabolism, posttranslational modifications, and chromatin remodeling. Moreover, we discovered that Epab undergoes phosphorylation on the serine, threonine, and tyrosine residues, which are localized in the RNA recognition motifs 2, 3, and 4 or C-terminal. Conclusively, these findings suggest that Epab not only functions in the translational control of maternal mRNAs through binding to their poly(A) tails but also participates in various cellular events through interacting with certain group proteins. Most likely, Epab undergoes a dynamic phosphorylation during the oocyte maturation and the early embryo development to carry out these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on request.

References

  1. Winata CL, Korzh V. The translational regulation of maternal mRNAs in time and space. FEBS Lett. 2018;592:3007–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bettegowda A, Smith GW. Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Front Biosci. 2007;12:3713–26.

    Article  CAS  PubMed  Google Scholar 

  3. Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15:774–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 2003;4:223.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eliseeva IA, Lyabin DN, Ovchinnikov LP. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochemistry (Mosc). 2013;78:1377–91.

    Article  CAS  PubMed  Google Scholar 

  6. Sachs AB, Davis RW, Kornberg RD. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol. 1987;7:3268–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gray NK, Coller JM, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 2000;19:4723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roy G, De Crescenzo G, Khaleghpour K, Kahvejian A, O’Connor-McCourt M, Sonenberg N. Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol. 2002;22:3769–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kozlov G, De Crescenzo G, Lim NS, Siddiqui N, Fantus D, Kahvejian A, Trempe JF, Elias D, Ekiel I, Sonenberg N, O’Connor-McCourt M, Gehring K. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 2004;23:272–81.

    Article  CAS  PubMed  Google Scholar 

  10. Cosson B, Couturier A, Le Guellec R, Moreau J, Chabelskaya S, Zhouravleva G, Philippe M. Characterization of the poly(A) binding proteins expressed during oogenesis and early development of Xenopus laevis. Biol Cell. 2002;94:217–31.

    Article  CAS  PubMed  Google Scholar 

  11. Wilkie GS, Gautier P, Lawson D, Gray NK. Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol Cell Biol. 2005;25:2060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci U S A. 2005;102:367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozturk S, Sozen B, Demir N. Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J Assist Reprod Genet. 2015;32:137–46.

    Article  PubMed  Google Scholar 

  14. Ozturk S, Guzeloglu-Kayisli O, Demir N, Sozen B, Ilbay O, Lalioti MD, Seli E. Epab and Pabpc1 are differentially expressed during male germ cell development. Reprod Sci. 2012;19:911–22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guzeloglu-Kayisli O, Pauli S, Demir H, Lalioti MD, Sakkas D, Seli E. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14:581–8.

    Article  CAS  PubMed  Google Scholar 

  16. Ozturk S, Yaba-Ucar A, Sozen B, Mutlu D, Demir N. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reprod Fertil Dev. 2016;28:375–83.

    Article  CAS  PubMed  Google Scholar 

  17. Uysal F, Ozturk S. Embryonic poly(A)-binding protein is differently expressed and interacts with the messenger RNAs in the mouse oocytes and early embryos. J Cell Biochem. 2019;120:4694–709.

    Article  CAS  PubMed  Google Scholar 

  18. Sakugawa N, Miyamoto T, Sato H, Ishikawa M, Horikawa M, Hayashi H, Ishikawa M, Sengoku K. Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns. J Assist Reprod Genet. 2008;25:215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guzeloglu-Kayisli O, Lalioti MD, Babayev E, Torrealday S, Karakaya C, Seli E. Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos. Mol Hum Reprod. 2014;20:59–65.

    Article  CAS  PubMed  Google Scholar 

  20. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1982;1:681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  CAS  PubMed  Google Scholar 

  22. Asami M, Lam BYH, Ma MK, Rainbow K, Braun S, VerMilyea MD, Yeo GSH, Perry ACF. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29(209–16): e4.

    Google Scholar 

  23. Gorgoni B, Richardson WA, Burgess HM, Anderson RC, Wilkie GS, Gautier P, Martins JP, Brook M, Sheets MD, Gray NK. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc Natl Acad Sci U S A. 2011;108:7844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guzeloglu-Kayisli O, Lalioti MD, Aydiner F, Sasson I, Ilbay O, Sakkas D, Lowther KM, Mehlmann LM, Seli E. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem J. 2012;446:47–58.

    Article  CAS  PubMed  Google Scholar 

  25. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–4.

    Article  CAS  PubMed  Google Scholar 

  26. Kawashima I, Liu Z, Mullany LK, Mihara T, Richards JS, Shimada M. EGF-like factors induce expansion of the cumulus cell-oocyte complexes by activating calpain-mediated cell movement. Endocrinology. 2012;153:3949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Friend K, Brook M, Bezirci FB, Sheets MD, Gray NK, Seli E. Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochem J. 2012;445:93–100.

    Article  CAS  PubMed  Google Scholar 

  28. Yang CR, Lowther KM, Lalioti MD, Seli E. Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology. 2016;157:405–16.

    Article  CAS  PubMed  Google Scholar 

  29. Lowther KM, Favero F, Yang CR, Taylor HS, Seli E. Embryonic poly(A)-binding protein is required at the preantral stage of mouse folliculogenesis for oocyte-somatic communication. Biol Reprod. 2017;96:341–51.

    Article  PubMed  Google Scholar 

  30. Hacariz O, Sayers G, Baykal AT. A proteomic approach to investigate the distribution and abundance of surface and internal Fasciola hepatica proteins during the chronic stage of natural liver fluke infection in cattle. J Proteome Res. 2012;11:3592–604.

    Article  CAS  PubMed  Google Scholar 

  31. Ozgul S, Kasap M, Akpinar G, Kanli A, Guzel N, Karaosmanoglu K, Baykal AT, Iseri P. Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson’s disease by using proteomic and molecular approaches. Neurochem Int. 2015;85–86:1–13.

    Article  PubMed  Google Scholar 

  32. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74:5383–92.

    Article  CAS  PubMed  Google Scholar 

  33. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.

    Article  CAS  PubMed  Google Scholar 

  34. Guney Eskiler G, Yanar S, Akpinar G, Kasap M. Proteomic analysis of talazoparib resistance in triple-negative breast cancer cells. J Biochem Mol Toxicol. 2021;35:e22678.

    Article  CAS  PubMed  Google Scholar 

  35. Ma H, Qazi S, Ozer Z, Zhang J, Ishkhanian R, Uckun FM. Regulatory phosphorylation of Ikaros by Bruton’s tyrosine kinase. PLoS ONE. 2013;8:e71302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev. 2017;29:1890–901.

  37. Ozturk S. The translational functions of embryonic poly(A)-binding protein during gametogenesis and early embryo development. Mol Reprod Dev. 2019;86:1548–60.

    Article  CAS  PubMed  Google Scholar 

  38. Choudhury P, Kretschmer J, Hackert P, Bohnsack KE, Bohnsack MT. The DExD box ATPase DDX55 is recruited to domain IV of the 28S ribosomal RNA by its C-terminal region. RNA Biol. 2021;18:1124–35.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta. 2012;1822:1896–912.

    Article  CAS  PubMed  Google Scholar 

  40. Nagaoka SI, Nakaki F, Miyauchi H, Nosaka Y, Ohta H, Yabuta Y, Kurimoto K, Hayashi K, Nakamura T, Yamamoto T, Saitou M. ZGLP1 is a determinant for the oogenic fate in mice. Science. 2020;367:eaaw4115.

  41. Strauss TJ, Castrillon DH, Hammes SR. GATA-like protein-1 (GLP-1) is required for normal germ cell development during embryonic oogenesis. Reproduction. 2011;141:173–81.

    Article  CAS  PubMed  Google Scholar 

  42. Smirnova VV, Shestakova ED, Bikmetov DV, Chugunova AA, Osterman IA, Serebryakova MV, Sergeeva OV, Zatsepin TS, Shatsky IN, Terenin IM. eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. RNA. 2019;25:757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, Ainbinder E, Saada A, Bialik S, Kimchi A. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30:1991–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levy-Strumpf N, Deiss LP, Berissi H, Kimchi A. DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol Cell Biol. 1997;17:1615–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng S, Gallie DR. eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. J Biol Chem. 2007;282:25247–58.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: multifaceted regulators during gametogenesis and early embryogenesis. BioEssays. 2021;43:e2000335.

    Article  PubMed  Google Scholar 

  47. Lowther KM, Mehlmann LM. Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol Reprod. 2015;93:43.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Padmanabhan K, Richter JD. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 2006;20:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim JH, Richter JD. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 2007;21:2571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle. 2022;21:547–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sfakianoudis K, Maziotis E, Karantzali E, Kokkini G, Grigoriadis S, Pantou A, Giannelou P, Petroutsou K, Markomichali C, Fakiridou M, Koutsilieris M, Asimakopoulos B, Pantos K, Simopoulou M. Molecular drivers of developmental arrest in the human preimplantation embryo: a systematic review and critical analysis leading to mapping future research. Int J Mol Sci. 2021;22:8353.

  52. Sha QQ, Zheng W, Wu YW, Li S, Guo L, Zhang S, Lin G, Ou XH, Fan HY. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat Commun. 2020;11:4917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Solovova OA, Chernykh VB. Genetics of oocyte maturation defects and early embryo development arrest. Genes (Basel). 2022;13:1920.

  54. Ntostis P, Iles D, Kokkali G, Vaxevanoglou T, Kanavakis E, Pantou A, Huntriss J, Pantos K, Picton HM. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Hum Reprod. 2021;37:80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCallie BR, Parks JC, Trahan GD, Jones KL, Coate BD, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. Compromised global embryonic transcriptome associated with advanced maternal age. J Assist Reprod Genet. 2019;36:915–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by TUBITAK (grant no. 218S612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saffet Ozturk.

Ethics declarations

Ethical approval

All experimental protocols were performed in accordance with relevant guidelines and regulations approved by the Akdeniz University Institutional Animal Care and Use Committee (protocol number: 1286/2021.04.011).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, S., Kosebent, E.G., Talibova, G. et al. Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos. J Assist Reprod Genet 40, 929–941 (2023). https://doi.org/10.1007/s10815-023-02746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02746-7

Keywords

Navigation