Skip to main content
Log in

Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To explore the whole-chromosome status, origins, and mechanisms of chromosomal abnormalities in good-quality cleavage embryos using multiple annealing and looping-based amplification cycle (MALBAC) sequencing.

Methods

The embryos studied came from7 patients (maternal aged 26–35) who had healthy birth from the same IVF cycles. These 21 frozen day 3 good-quality embryos were thawed and disaggregated into individual blastomere. Each blastomere was collected and analyzed by MALBAC sequencing.

Results

Conclusive results were obtained from a high percentage of blastomeres (95.3%). A total of 46.6% of blastomeres were diploid, 53.4% were abnormal, and 28.0% had complex aneuploidy. Out of 21 embryos, 3 (14.3%) were normal and 18 (85.7%) were mosaics, showing the occurrence of mitotic errors; aneuploidy was confirmed in all cells of 4 of the 18 embryos, which showed the coexistence of meiotic errors. Conclusive results were obtained from all blastomeres of 15 embryos (71.4%, 15/21), which enabled us to reconstruct the cell lineage on the basis of the chromosomal content of the blastomeres in each division. There were 9 mitotic errors (8.7%, 9/103): nondisjunction accounted for 88.9% (8/9), and endoreplication accounted for 11.1% (1/9).

Conclusions

In good-quality embryos, there was a high rate and diverse array of chromosomal abnormalities. Morphological evaluation does not appear to assist in the reduction in meiotic errors from parental origins. Mitotic errors were common, and nondisjunction was found to be the main mechanism causing malsegregation during the cleavage divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glujovsky D, Farquhar C, Quinteiro Retamar AM, Alvarez Sedo CR, Blake D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;30:CD002118.

    Google Scholar 

  2. Sahoo T, Dzidic NA-O, Strecker MA-O, Commander S, Travis MK, Doherty C, et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med. 2017;19:83–9.

    PubMed  CAS  Google Scholar 

  3. Baart EB, Martini E, van den Berg I, Macklon NS, RJH G, Fauser BCJM, et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod. 2006;21:223–33.

    PubMed  CAS  Google Scholar 

  4. Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338:1627–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155:1492–506.

    PubMed  CAS  Google Scholar 

  6. Huang J, Yan L, Fan W, Zhao N, Zhang Y, Tang F, et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril. 2014;102:1685–91.

    PubMed  CAS  Google Scholar 

  7. Huang J, Yan L, Lu S, Zhao N, Xie XS, Qiao J. Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil Steril. 2016;105:1532–6.

    PubMed  CAS  Google Scholar 

  8. Babariya D, Fragouli E, Alfarawati S, Spath K, Wells D. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32:2549–60.

    PubMed  CAS  Google Scholar 

  9. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83.

    PubMed  CAS  Google Scholar 

  10. Weissman A, Shoham G, Shoham Z, Fishel S, Leong M, Yaron Y. Chromosomal mosaicism detected during preimplantation genetic screening: results of a worldwide Web-based survey. Fertil Steril. 2017;107:1092–7.

    PubMed  Google Scholar 

  11. Harper J. Sermon K Fau - Geraedts J, Geraedts J Fau - Vesela K, Vesela K Fau - Harton G, Harton G Fau - Thornhill A, Thornhill A Fau - Pehlivan T et al. What next for preimplantation genetic screening? Hum Reprod. 2008;23:478–80.

    PubMed  Google Scholar 

  12. Voullaire L, Slater H, Williamson R, Wilton L. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet. 2000;106:210–7.

    PubMed  CAS  Google Scholar 

  13. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    PubMed  CAS  Google Scholar 

  14. Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod. 2013;28:256–64.

    PubMed  CAS  Google Scholar 

  15. Zhang L, Yilmaz A, Chian R-C, Son W-Y, Zhang XY, Kong D, et al. Reliable preimplantation genetic diagnosis in thawed human embryos vitrified at cleavage stages without biopsy. J Assist Reprod Genet. 2011;28:597–602.

    PubMed  PubMed Central  Google Scholar 

  16. Mertzanidou A, Spits C, Nguyen HT, Van de Velde H, Sermon K. Evolution of aneuploidy up to day 4 of human preimplantation development. Hum Reprod. 2013;28:1716–24.

    PubMed  CAS  Google Scholar 

  17. Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25:1066–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Chow JF, Yeung WS, Lau EY, Lee VC, Ng EH, Ho P-C. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol. 2014;12:105.

    PubMed  PubMed Central  Google Scholar 

  19. van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B, Korevaar JC, Heineman MJ, van der Veen F, et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update. 2011;17:620–7.

    PubMed  Google Scholar 

  20. Donate A, Estop AM, Giraldo J, Templado C. Paternal age and numerical chromosome abnormalities in human spermatozoa. Cytogenet Genome Res. 2016;148:241–8.

    PubMed  CAS  Google Scholar 

  21. Ramasamy R, Scovell JM, Kovac JR, Cook PJ, Lamb DJ, Lipshultz LI. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103:906–9.e1.

    PubMed  PubMed Central  Google Scholar 

  22. Christopikou D, Tsorva E, Economou K, Shelley P, Davies S, Mastrominas M, et al. Polar body analysis by array comparative genomic hybridization accurately predicts aneuploidies of maternal meiotic origin in cleavage stage embryos of women of advanced maternal age. Hum Reprod. 2013;28:1426–34.

    PubMed  CAS  Google Scholar 

  23. Ubaldi FM, Cimadomo D, Capalbo A, Vaiarelli A, Buffo L, Trabucco E, et al. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience. Fertil Steril. 2017;107:1173–80.

    PubMed  Google Scholar 

  24. Obradors A, Rius M, Daina G, Ramos L, Benet J, Navarro J. Whole-chromosome aneuploidy analysis in human oocytes: focus on comparative genomic hybridization. Cytogenet Genome Res. 2011;133:119–26.

    PubMed  CAS  Google Scholar 

  25. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92:890–6.

    PubMed  Google Scholar 

  26. Bazrgar M, Gourabi H, Valojerdi MR, Yazdi PE, Baharvand H. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells. Stem Cells Dev. 2013;22:2449–56.

    PubMed  CAS  Google Scholar 

  27. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod BioMed Online. 2017;34:137–46.

    PubMed  CAS  Google Scholar 

  29. Vassena R, Boué S, González-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138:3699–709.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Bielanska M, Tan S, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17:413–9.

    PubMed  Google Scholar 

  31. Delhanty JD, Harper JC, Ao A, Handyside AH, Winston RM. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet. 1997;99:755–60.

    PubMed  CAS  Google Scholar 

  32. Gutiérrez-Mateo C, Colls P, Sánchez-García J, Escudero T, Prates R, Ketterson K, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95:953–8.

    PubMed  Google Scholar 

  33. McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11:e1005601.

    PubMed  PubMed Central  Google Scholar 

  34. Fragouli E, Alfarawati S, Daphnis DD, Goodall NN, Mania A, Griffiths T, et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26:480–90.

    PubMed  CAS  Google Scholar 

  35. Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017;136:805–19.

    PubMed  CAS  Google Scholar 

  36. Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.

    PubMed  CAS  Google Scholar 

  37. Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132:1001–13.

    PubMed  Google Scholar 

  38. Daphnis DD, Fragouli E, Economou K, Jerkovic S, Craft IL, Delhanty JDA, et al. Analysis of the evolution of chromosome abnormalities in human embryos from day 3 to 5 using CGH and FISH. Mol Hum Reprod. 2008;14:117–25.

    PubMed  CAS  Google Scholar 

  39. Harrison RH, Kuo HC, Scriven PN, Handyside AH, Ogilvie CM. Lack of cell cycle checkpoints in human cleavage stage embryos revealed by a clonal pattern of chromosomal mosaicism analysed by sequential multicolour FISH. Zygote. 2008;8:217–24.

    Google Scholar 

  40. Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Evidence that human blastomere cleavage is under unique cell cycle control. J Assist Reprod Genet. 2009;26:187–95.

    PubMed  PubMed Central  Google Scholar 

  41. Lee A, Kiessling AA. Early human embryos are naturally aneuploid-can that be corrected? J Assist Reprod Genet. 2016;34:15–21.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by the Natural Science Foundation of Guangxi Province (grant number 2017GXNSFAA198149, 2017GXNSFAA198163) and the Major Science and Technology of Nanning (grant no. 20153011, 20153124, 20163138)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Qiu or Changlong Xu.

Ethics declarations

The study was approved by the Institutional Review Board of the 3rd Affiliated Hospital of Guangxi Medical University. We obtained signed consent from all of the donors before the treatment.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Qiu, Y., Xu, C. et al. Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos. J Assist Reprod Genet 37, 1711–1718 (2020). https://doi.org/10.1007/s10815-020-01803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01803-9

Keywords

Navigation