Skip to main content

Advertisement

Log in

The protective effect of platelet-rich plasma administrated on ovarian function in female rats with Cy-induced ovarian damage

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the protective effect of PRP on ovarian function in female rats with cyclophosphamide (Cy)-induced ovarian damage.

Methods

Thirty-two adult female Sprague–Dawley rats were randomly divided into four groups. Group 1 (control-sodium chloride 0.9%; 1 mL/kg, single-dose ip injection), group 2 (Cy); 75 mg/kg, single-dose ip injection and sodium chloride 0.9% (1 mL/kg, single-dose ip injection), group 3 Cy plus PRP, Cy (75 mg/kg, single-dose and PRP (200 μl, single-dose) ip injection), group 4 (PRP, 200 μl, single-dose ip injection). Primordial, antral, and atretic follicle counts; serum anti-Müllerian hormone (AMH) levels; AMH-positive granulosa cells; and gene expression analysis of Ddx4 were assessed.

Results

Serum AMH levels were significantly lower in group 2 compared to groups 1, 3, and 4 (p < 0.01, p < 0.01, and p = 0.04, respectively). A significant difference was found in the primordial, primary, secondary, antral, and atretic follicle counts between all groups (p < 0.01). There was a statistically significant difference in AMH-positive staining primary, secondary, and antral follicles count between the groups (p < 0.01). There was a statistically significant difference in primary, secondary, and antral AMH positive staining follicle intensity score between the groups (p < 0.01). Ddx4 expression in group 4 was highest compared to other groups.

Conclusion

Our study may provide evidence that PRP could protect ovarian function against ovarian damage induced by Cy. It could lead to improved primordial, primary, secondary, and antral follicle numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Woad KJ, Watkins WJ, Prendergast D, Shelling AN. The genetic basis of premature ovarian failure. Aust N Z J Obstet Gynaecol. 2006;46:242–4.

    PubMed  Google Scholar 

  2. Shelling AN. Premature ovarian failure. Reproduction. 2010;140:633–41.

    CAS  PubMed  Google Scholar 

  3. Sheikhansari G, Aghebati-Maleki L, Nouri M, Jadidi-Niaragh F, Yousefi M. Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother. 2018;102:254–62.

    CAS  PubMed  Google Scholar 

  4. Sukur YE, Kivancli IB, Ozmen B. Ovarian aging and premature ovarian failure. J Turk-German Gynecol Assoc. 2014;15:190–6.

    Google Scholar 

  5. van Kasteren Y. Treatment concepts for premature ovarian failure. J Soc Gynecol Investig. 2001;8:58–S59.

    Google Scholar 

  6. Blumenfeld Z. Chemotherapy and fertility. Best Pract Res Clin Obstet Gynaecol. 2012;26(3):379–90.

    PubMed  Google Scholar 

  7. Meirow D, Biederman H, Anderson RA, Wallace WH. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010;53:727–39.

    PubMed  Google Scholar 

  8. Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol. 2000;169:123–31.

    CAS  PubMed  Google Scholar 

  9. Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging. 2011;3(8):782–93.

    PubMed  PubMed Central  Google Scholar 

  10. Zhou L, Xie Y, Li S, Liang Y, Qiu Q, Lin H, et al. Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo. J Ovar Res. 2017;10(1):56.

    Google Scholar 

  11. Yuksel A, Bildik G, Senbabaoglu F, Akın N, Arvas M, Unal F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30:2926–35.

    CAS  PubMed  Google Scholar 

  12. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.

    CAS  PubMed  Google Scholar 

  13. Pintat J, Silvestre A, Magalon G, Gadeau AP, Pesquer L, Perozziello A, et al. Intra-articular injection of mesenchymal stem cells and platelet-rich plasma to treat patellofemoral osteoarthritis: preliminary results of a long-term pilot study. J Vasc Interv Radiol. 2017;28(12):1708–13.

    PubMed  Google Scholar 

  14. Lee KS, Wilson JJ, Rabago DP, Baer GS, Jacobson JA, Borrero CG. Musculoskeletal applications of platelet-rich plasma: fad or future? AJR Am J Roentgenol. 2011;196(3):628–36.

    PubMed  Google Scholar 

  15. Bir SC, Esaki J, Marui A, Yamahara K, Tsubota H, Ikeda T, et al. Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse. J Vasc Surg. 2009;50(4):870–9 e2.

    PubMed  Google Scholar 

  16. Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E, et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94(4):298–307.

    PubMed  Google Scholar 

  17. Li W, Enomoto M, Ukegawa M, Hirai T, Sotome S, Wakabayashi Y, et al. Subcutaneous injections of platelet-rich plasma into skin flaps modulate proangiogenic gene expression and improve survival rates. Plast Reconstr Surg. 2012;129(4):858–66.

    CAS  PubMed  Google Scholar 

  18. Bielecki TM, Gazdzik TS, Arendt J, Szczepanski T, Krol W, Wielkoszynski T. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br Volüme. 2007;89(3):417–20.

    CAS  Google Scholar 

  19. Cieslik-Bielecka A, Bielecki T, Gazdzik TS, Arendt J, Krol W, Szczepanski T. Autologous platelets and leukocytes can improve healing of infected high-energy soft tissue injury. Transfusion Apheresis Sci: official journal of the World Apheresis Association: official journal of the European Society for Haemapheresis. 2009;41(1):9–12.

    Google Scholar 

  20. Dehghani F, Aboutalebi H, Esmaeilpour T, Panjehshahin MR, Bordbar H. Effect of platelet-rich plasma (PRP) on ovarian structures in cyclophosphamide-induced ovarian failure in female rats: a stereological study. Toxicol Mech Methods. 2018;28(9):653–9.

    CAS  PubMed  Google Scholar 

  21. Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil. 1968;17:555–7.

    CAS  PubMed  Google Scholar 

  22. Yeh J, Kim BS, Peresie J. Protection against cisplatin-induced ovarian damage by the antioxidant sodium 2-mercaptoethanesulfonate (mesna) in female rats. Am J Obstet Gynecol. 2008;198(4):463.e1–6.

    Google Scholar 

  23. Christin-Maitre S, Braham R. General mechanisms of prematüre ovarian failure and clinical check-up. Gynecol Obstet Fertil. 2008;36:857–61.

    CAS  PubMed  Google Scholar 

  24. Morgan S, Anderson RA, Gourley C, Wallace WH, Spears N. How do chemotherapeutic agents damage the ovary? Hum Reprod Update. 2012;18:525–35.

    CAS  PubMed  Google Scholar 

  25. Hao X, Anastácio A, Liu K, Rodriguez-Wallberg KA. Ovarian follicle depletion induced by chemotherapy and the investigational stages of potential fertility-protective treatments-a review. Int J Mol Sci. 2019;23(19):20.

    Google Scholar 

  26. Ben-Aharon I, Meizner I, Granot T, Uri S, Hasky N, Rizel S, et al. Chemotherapy-induced ovarian failure as a prototype for acute vascular toxicity. Oncologist. 2012;17:1386–93.

    PubMed  PubMed Central  Google Scholar 

  27. Jayasinghe YL, Wallace WHB, Anderson RA. Ovarian function, fertility and reproductive lifespan in cancer patients. Expert Rev Endocrinol Metab. 2018;13:125–36.

    CAS  PubMed  Google Scholar 

  28. Ronnes H, Kashi O, Meirow D. Prevention of chemotherapy-induced ovarian damage. Fertil Steril. 2016;105:20–9.

    Google Scholar 

  29. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, et al. Cyclophosphamide triggers follicle activation causing ovarian reserve ‘burn out’; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5:185ra62.

    PubMed  Google Scholar 

  30. Bedoschi G, Navarro PA, Oktay K. Chemotherapy-induced damage to ovary: mechanisms and clinical impact. Future Oncol. 2016;12:2333–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gonfloni S, Di Tella L, Caldarola S, Cannata SM, Klinger FG, Di Bartolomeo C, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15:1179–85.

    CAS  PubMed  Google Scholar 

  32. Ganesan S, Keating AF. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion. Toxicol Appl Pharmacol. 2016;292:65–74.

    CAS  PubMed  Google Scholar 

  33. Leng L, Tan Y, Gong F, Hu L, Ouyang Q, Zhao Y, et al. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Hum Reprod. 2015;30(3):737–48.

    CAS  PubMed  Google Scholar 

  34. Bukovsky A. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reprod Biol Endocrinol. 2015;13:10.

    PubMed  PubMed Central  Google Scholar 

  35. Fabi S, Sundaram H. The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plast Surg. 2014;30:157–71.

    CAS  PubMed  Google Scholar 

  36. Babu M, Wells A. Dermal-epidermal communication in wound healing. Wounds. 2001;13:183–9.

    Google Scholar 

  37. Herraiz S, Buigues A, Diaz-Garcia C, Romeu M, Martinez S, Gomez-Segui I, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril. 2018;109:908–18.

    PubMed  Google Scholar 

  38. Huang Q, Liu B, Jiang R, Liao S, Wei Z, Bi Y, et al. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma accelerate restoration of ovarian function in cyclophosphamide-induced POI rats. Biol Reprod. 2019;101:91–101.

    PubMed  Google Scholar 

  39. Dehghani F, Sotoude N, Bordbar H, Panjeshahin MR, Karbalay-Doust S. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets. 2019;30(4):513–20.

    CAS  PubMed  Google Scholar 

  40. Vural B, Duruksu G, Vural F, Gorguc M, Karaoz E. Effects of VEGF + mesenchymal stem cells and platelet-rich plasma on inbred rat ovarian functions in cyclophosphamide-induced premature ovarian insufficiency model. Stem Cell Rev. 2019;15(4):558–73.

    CAS  Google Scholar 

  41. Pantos K, Simopoulou M, Pantou A, Rapani A, Tsioulou P, Nitsos N, et al. A case series on natural conceptions resulting in ongoing pregnancies in menopausal and prematurely menopausal women following platelet-rich plasma treatment. Cell Transplant. 2019;4:963689719859539. https://doi.org/10.1177/0963689719859539.

    Article  Google Scholar 

  42. Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol. 2007;7:136.

    PubMed  PubMed Central  Google Scholar 

  43. Guo K, Li CH, Wang XY, He DJ, Zheng P. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod. 2016;22(5):316–28.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Ozcan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, P., Takmaz, T., Tok, O.E. et al. The protective effect of platelet-rich plasma administrated on ovarian function in female rats with Cy-induced ovarian damage. J Assist Reprod Genet 37, 865–873 (2020). https://doi.org/10.1007/s10815-020-01689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01689-7

Keywords

Navigation