Skip to main content
Log in

Pregnancy rates after pre-implantation genetic screening for aneuploidy are only superior when trophectoderm biopsy is performed on hatching embryos

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

In vitro fertilization with trophectoderm embryo biopsy and pre-implantation genetic screening with comprehensive chromosomal screening (PGS-CCS) for aneuploidy is becoming increasingly more popular. Embryos are cryopreserved and implanted in a subsequent frozen thawed embryo transfer cycle (FET). No studies have investigated differences in pregnancy outcomes by timing of trophectoderm biopsy relative to stages of blastocyst development.

Methods

Retrospective study of all patients (n = 363) at a single IVF center between January 1, 2013 and December 31, 2016 undergoing single embryo transfer with PGS-CCS where embryos were cryopreserved with subsequent FET. Embryo expansion and grading was assessed both at the time of biopsy and transfer. Pregnancy rates were analyzed by embryo expansion and embryo grading.

Results

Implantation, clinical pregnancy, and live birth rates improved significantly with increased embryo expansion at the time of embryo biopsy (P < 0.001). Pregnancy loss decreased with increases in embryo expansion prior to biopsy (P < 0.001). Superior live birth rates with PGS-CCS were seen when embryos were hatching at the time of biopsy (p < 0.001). For fresh and frozen embryo transfers without PGS-CCS, embryo expansion did not affect pregnancy outcomes.

Conclusions

PGS-CCS significantly increases implantation and live birth rates only if embryos are hatching at the time of biopsy. The embryo biopsy itself on a non-hatching embryo significantly damages the embryo in ways which are not reflected in future embryo expansion. IVF labs should wait until embryos hatch before performing trophectoderm biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data is publicly available at https://osf.io/ under project “timing of PGD biopsy” under Michael Traub.

Abbreviations

IVF:

In vitro fertilization

PGS-CCS:

preimplantation genetic screening with complete chromosomal analysis

FET:

frozen thawed embryo transfer

eSET:

elective single embryo transfer

References

  1. Kalma Y, Bar-El L, Asaf-Tisser S, Malcov M, Reches A, Hasson J, et al. Optimal timing for blastomere biopsy of 8-cell embryos for preimplantation genetic diagnosis. Hum Reprod. 2017;33:1–7. https://doi.org/10.1093/humrep/dex343.

    Article  CAS  Google Scholar 

  2. Carson SA, Gentry WL, Smith AL, Buster JE. Trophectoderm microbiopsy in murine blastocysts: comparison of four methods. J Assist Reprod Genet. 1993;10(6):427–33.

    Article  CAS  PubMed  Google Scholar 

  3. Dokras A, Sargent IL, Gardner RL, Barlow DH. Human trophectoderm biopsy and secretion of chorionic gonadotrophin. Hum Reprod. 1991;6(10):1453–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gianaroli L, Magli MC, Ferraretti AP. The in vivo and in vitro efficiency and efficacy of PGD for aneuploidy. Mol Cell Endocrinol. 2001;183(Suppl 1):S13–8.

    Article  CAS  PubMed  Google Scholar 

  5. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63 e1. https://doi.org/10.1016/j.fertnstert.2013.11.004.

    Article  PubMed  Google Scholar 

  6. Ata B, Kaplan B, Danzer H, Glassner M, Opsahl M, Tan SL, et al. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated. Reprod BioMed Online. 2012;24(6):614–20. https://doi.org/10.1016/j.rbmo.2012.02.009.

    Article  CAS  PubMed  Google Scholar 

  7. Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703. https://doi.org/10.1016/j.fertnstert.2013.07.2002.

    Article  CAS  PubMed  Google Scholar 

  8. Lopes AS, Frederickx V, Van Kerkhoven G, Campo R, Puttemans P, Gordts S. Survival, re-expansion and cell survival of human blastocysts following vitrification and warming using two vitrification systems. J Assist Reprod Genet. 2015;32(1):83–90. https://doi.org/10.1007/s10815-014-0373-2.

    Article  PubMed  Google Scholar 

  9. Li Z, Wang YA, Ledger W, Edgar DH, Sullivan EA. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study. Hum Reprod. 2014;29(12):2794–801. https://doi.org/10.1093/humrep/deu246.

    Article  CAS  PubMed  Google Scholar 

  10. Sifer C. Contribution of embryo vitrification procedure to ART efficiency. Gynecol Obstet Fertil. 2014;42(10):721–4. https://doi.org/10.1016/j.gyobfe.2014.07.031.

    Article  CAS  PubMed  Google Scholar 

  11. Van Landuyt L, Van de Velde H, De Vos A, Haentjens P, Blockeel C, Tournaye H, et al. Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human day 3 embryos. Hum Reprod. 2013;28(11):2943–9. https://doi.org/10.1093/humrep/det356.

    Article  PubMed  Google Scholar 

  12. Pavone ME, Innes J, Hirshfeld-Cytron J, Kazer R, Zhang J. Comparing thaw survival, implantation and live birth rates from cryopreserved zygotes, embryos and blastocysts. J Human Reprod Sci. 2011;4(1):23–8. https://doi.org/10.4103/0974-1208.82356.

    Article  Google Scholar 

  13. Coates A, Kung A, Mounts E, Hesla J, Bankowski B, Barbieri E, et al. Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: a randomized controlled trial. Fertil Steril. 2017;107(3):723–30 e3. https://doi.org/10.1016/j.fertnstert.2016.12.022.

    Article  PubMed  Google Scholar 

  14. Karacan M, Erdem E, Usta A, Arvas A, Cebi Z, Camlibel T. Gonadotropin-releasing hormone agonist triggering with concomitant administration of low doses of human chorionic gonadotropin or a freeze-all strategy in high responders. Saudi Med J. 2017;38(6):586–91. https://doi.org/10.15537/smj.2017.6.17717.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zech J, Brandao A, Zech M, Lugger K, Neururer S, Ulmer H, et al. Elective frozen-thawed embryo transfer (FET) in women at risk for ovarian hyperstimulation syndrome. Reprod Biol. 2017;18:46–52. https://doi.org/10.1016/j.repbio.2017.12.004.

    Article  PubMed  Google Scholar 

  16. Delvigne A, Rozenberg S. Review of clinical course and treatment of ovarian hyperstimulation syndrome (OHSS). Hum Reprod Update. 2003;9(1):77–96.

    Article  CAS  PubMed  Google Scholar 

  17. Endo T, Honnma H, Hayashi T, Chida M, Yamazaki K, Kitajima Y, et al. Continuation of GnRH agonist administration for 1 week, after hCG injection, prevents ovarian hyperstimulation syndrome following elective cryopreservation of all pronucleate embryos. Hum Reprod. 2002;17(10):2548–51.

    Article  CAS  PubMed  Google Scholar 

  18. Martinez MC, Ruiz FJ, Garcia-Velasco JA. GnRH-agonist triggering to avoid ovarian hyperstimulation syndrome: a review of the evidence. Curr Drug Targets. 2013;14(8):843–9.

    Article  CAS  PubMed  Google Scholar 

  19. Prapas Y, Ravanos K, Petousis S, Panagiotidis Y, Papatheodorou A, Margioula-Siarkou C, et al. GnRH antagonist administered twice the day before hCG trigger combined with a step-down protocol may prevent OHSS in IVF/ICSI antagonist cycles at risk for OHSS without affecting the reproductive outcomes: a prospective randomized control trial. J Assist Reprod Genet. 2017;34(11):1537–45. https://doi.org/10.1007/s10815-017-1010-7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pontre JC, Ryan JP, Tan A, Hart RJ. The interval transfer of a frozen-thawed embryo is more successful than a fresh embryo transfer for women undergoing IVF with recurrent implantation failure after cleavage stage embryo biopsy. Aust N Z J Obstet Gynaecol. 2018. https://doi.org/10.1111/ajo.12798.

  21. Roque M, Valle M, Guimaraes F, Sampaio M, Geber S. Freeze-all policy: fresh vs. frozen-thawed embryo transfer. Fertil Steril. 2015;103(5):1190–3. https://doi.org/10.1016/j.fertnstert.2015.01.045.

    Article  PubMed  Google Scholar 

  22. Adeviye Ersahin A, Acet M, Ersahin SS, Dokuzeylul GN. Frozen embryo transfer prevents the detrimental effect of high estrogen on endometrium receptivity. J Turk German Gynecological Assoc. 2017;18(1):38–42. https://doi.org/10.4274/jtgga.2016.0186.

    Article  CAS  Google Scholar 

  23. Wu K, Zhao H, Liu H, Li M, Ma S, Li C, et al. Day 3 ET, single blastocyst transfer (SBT) or frozen-thawed embryo transfer (FET): which is preferable for high responder patients in IVF/ICSI cycles? J Assist Reprod Genet. 2014;31(3):275–8. https://doi.org/10.1007/s10815-013-0156-1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99(2):389–92. https://doi.org/10.1016/j.fertnstert.2012.09.044.

    Article  PubMed  Google Scholar 

  25. Zhou F, Lin XN, Tong XM, Li C, Liu L, Jin XY, et al. A frozen-thawed embryo transfer program improves the embryo utilization rate. Chin Med J. 2009;122(17):1974–8.

    PubMed  Google Scholar 

  26. Roy TK, Bradley CK, Bowman MC, McArthur SJ. Single-embryo transfer of vitrified-warmed blastocysts yields equivalent live-birth rates and improved neonatal outcomes compared with fresh transfers. Fertil Steril. 2014;101(5):1294–301. https://doi.org/10.1016/j.fertnstert.2014.01.046.

    Article  PubMed  Google Scholar 

  27. Maheshwari A, Raja EA, Bhattacharya S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the human fertilisation and embryology authority anonymized dataset. Fertil Steril. 2016;106(7):1703–8. https://doi.org/10.1016/j.fertnstert.2016.08.047.

    Article  PubMed  Google Scholar 

  28. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33. https://doi.org/10.1056/NEJMoa1513873.

    Article  PubMed  Google Scholar 

  29. Ozgur K, Berkkanoglu M, Bulut H, Humaidan P, Coetzee K. Perinatal outcomes after fresh versus vitrified-warmed blastocyst transfer: retrospective analysis. Fertil Steril. 2015;104(4):899–907 e3. https://doi.org/10.1016/j.fertnstert.2015.06.031.

    Article  PubMed  Google Scholar 

  30. Sun L, Chen ZH, Yin MN, Deng Y. Pregnancy and obstetric outcomes of fresh embryo transfer versus frozen-thawed embryo transfer in women below 35 years of age. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2017;37(7):929–32.

    CAS  PubMed  Google Scholar 

  31. Litzky JF, Boulet SL, Esfandiari N, Zhang Y, Kissin DM, Theiler RN, et al. Effect of frozen/thawed embryo transfer on birthweight, macrosomia, and low birthweight rates in US singleton infants. Am J Obstet Gynecol. 2018;218(4):433 e1–e10. https://doi.org/10.1016/j.ajog.2017.12.223.

    Article  Google Scholar 

  32. Vidal M, Vellve K, Gonzalez-Comadran M, Robles A, Prat M, Torne M, et al. Perinatal outcomes in children born after fresh or frozen embryo transfer: a Catalan cohort study based on 14,262 newborns. Fertil Steril. 2017;107(4):940–7. https://doi.org/10.1016/j.fertnstert.2017.01.021.

    Article  PubMed  Google Scholar 

  33. Sha T, Yin X, Cheng W, Massey IY. Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis. Fertil Steril. 2018;109(2):330–42 e9. https://doi.org/10.1016/j.fertnstert.2017.10.019.

    Article  PubMed  Google Scholar 

  34. Van Heertum K, Weinerman R. Neonatal outcomes following fresh as compared to frozen/thawed embryo transfer in in vitro fertilization. Birth Defects Res. 2018;110(8):625–9. https://doi.org/10.1002/bdr2.1216.

    Article  CAS  PubMed  Google Scholar 

  35. Dahdouh EM, Balayla J, Garcia-Velasco JA. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil Steril. 2015;104(6):1503–12. https://doi.org/10.1016/j.fertnstert.2015.08.038.

    Article  PubMed  Google Scholar 

  36. Chen M, Wei S, Hu J, Quan S. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis. PloS One. 2015;10(10):e0140779. https://doi.org/10.1371/journal.pone.0140779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100(1):100–7 e1. https://doi.org/10.1016/j.fertnstert.2013.02.056.

    Article  PubMed  Google Scholar 

  38. Scott RT Jr, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703. https://doi.org/10.1016/j.fertnstert.2013.04.035.

    Article  PubMed  Google Scholar 

  39. Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C, et al. Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril. 2013;99(5):1400–7. https://doi.org/10.1016/j.fertnstert.2012.11.041.

    Article  PubMed  Google Scholar 

  40. Keltz MD, Vega M, Sirota I, Lederman M, Moshier EL, Gonzales E, et al. Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages. J Assist Reprod Genet. 2013;30(10):1333–9. https://doi.org/10.1007/s10815-013-0070-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shinar S, Kornecki N, Schwartz T, Mey-Raz N, Amir H, Almog B, et al. Timing embryo biopsy for PGD - before or after cryopreservation? Gynecol Endocrinol. 2016;32(9):756–8. https://doi.org/10.1080/09513590.2016.1177010.

    Article  CAS  PubMed  Google Scholar 

  42. Linan A, Lawrenz B, El Khatib I, Bayram A, Arnanz A, Rubio C, et al. Clinical reassessment of human embryo ploidy status between cleavage and blastocyst stage by next generation sequencing. PLoS One. 2018;13(8):e0201652. https://doi.org/10.1371/journal.pone.0201652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen J, Wells D, Munne S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril. 2007;87(3):496–503. https://doi.org/10.1016/j.fertnstert.2006.07.1516.

    Article  PubMed  Google Scholar 

  44. Munne S, Cohen J, Simpson JL. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(17):1769–70; author reply 70-1. https://doi.org/10.1056/NEJMc076314.

    Article  CAS  PubMed  Google Scholar 

  45. Gardner DK, Vella P, Lane M, Wagley L, Schlenker T, Schoolcraft WB. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril. 1998;69(1):84–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Traub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The study was approved by the Northwell Health IRB HS16-0380. The study did not require patient consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Hobeika, E., Knochenhauer, E.S. et al. Pregnancy rates after pre-implantation genetic screening for aneuploidy are only superior when trophectoderm biopsy is performed on hatching embryos. J Assist Reprod Genet 36, 621–628 (2019). https://doi.org/10.1007/s10815-019-01400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01400-5

Keywords

Navigation