Skip to main content
Log in

Testosterone therapy for women with poor ovarian response undergoing IVF: a meta-analysis of randomized controlled trials

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present systematic review and meta-analysis was to summarize evidence on the effectiveness of testosterone supplementation for poor ovarian responders (POR) on IVF outcomes. The primary outcome was live birth rate (LBR); secondary outcomes were clinical pregnancy rate (CPR), miscarriage rate (MR), total and MII oocytes, and total embryos.

Methods

This meta-analysis of randomized controlled trials (RCTs) evaluates the effects of testosterone administration before/during COS compared with a control group in patients defined as POR. The primary outcome was live birth rate (LBR); secondary outcomes were clinical pregnancy rate (CPR), miscarriage rate (MR), total and MII oocytes, and total embryos. Pooled results were expressed as risk ratio (RR) or mean differences (MD) with 95% confidence interval (95% CI). Sources of heterogeneity were investigated through sensitivity and subgroup analysis. All analyses were performed by using the random-effects model.

Results

Women receiving testosterone showed higher LBR (RR 2.29, 95% CI 1.31–4.01, p = 0.004), CPR (RR 2.32, 95% CI 1.47–3.64, p = 0.0003), total oocytes (MD = 1.28 [95% CI 0.83, 1.73], p < 0.00001), MII oocytes (MD = 0.96 [95% CI 0.28, 1.65], p = 0.006), and total embryos (MD = 1.17 [95% CI 0.67, 1.67], p < 0.00001) in comparison to controls, with no difference in MR (p = ns). Sensitivity and subgroup analysis did not provide statistical changes to the pooled results.

Conclusions

Testosterone therapy seems promising to improve the success at IVF in POR patients. Further RCTs with rigorous methodology and inclusion criteria are still mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gizzo S, Quaranta M, Andrisani A, Bordin L, Vitagliano A, Esposito F, et al. Serum stem cell factor assay in elderly poor responder patients undergoing IVF: a new biomarker to customize follicle aspiration cycle by cycle. Reprod Sci. 2016;23(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kyrou D, Kolibianakis EM, Venetis CA, Papanikolaou EG, Bontis J, Tarlatzis BC. How to improve the probability of pregnancy in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Fertil Steril. 2009;91(3):749–6.

    Article  CAS  PubMed  Google Scholar 

  3. Patrizio P, Vaiarelli A, Levi Setti PE, Tobler KJ, Shoham G, Leong M, et al. How to define, diagnose and treat poor responders? Responses from a worldwide survey of IVF clinics. Reprod BioMed Online. 2015;30(6):581–92.

    Article  PubMed  Google Scholar 

  4. Busnelli A, Papaleo E, Del Prato D, La Vecchia I, Iachini E, Paffoni A, et al. A retrospective evaluation of prognosis and cost-effectiveness of IVF in poor responders according to the Bologna criteria. Hum Reprod. 2015;30(2):315–22.

    Article  PubMed  Google Scholar 

  5. Papathanasiou A, Searle BJ, King NM, Bhattacharya S. Trends in 'poor responder' research: lessons learned from RCTs in assisted conception. Hum Reprod Update. 2016;22(3):306–19.

    Article  PubMed  Google Scholar 

  6. Giovanale V, Pulcinelli FM, Ralli E, Primiero FM, Caserta D. Poor responders in IVF: an update in therapy. Gynecol Endocrinol. 2015 Apr;31(4):253–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gizzo S, Andrisani A, Esposito F, Oliva A, Zicchina C, Capuzzo D, et al. Ovarian reserve test: an impartial means to resolve the mismatch between chronological and biological age in the assessment of female reproductive chances. Reprod Sci. 2014;21(5):632–9.

    Article  PubMed  Google Scholar 

  8. Gizzo S, Andrisani A, Noventa M, Quaranta M, Esposito F, Armanini D, et al. Menstrual cycle length: a surrogate measure of reproductive health capable of improving the accuracy of biochemical/sonographical ovarian reserve test in estimating the reproductive chances of women referred to ART. Reprod Biol Endocrinol. 2015;13(28) a.

  9. Gizzo S, Andrisani A, Noventa M, Manfè S, Oliva A, Gangemi M, et al. Recombinant LH supplementation during IVF cycles with a GnRH-antagonist in estimated poor responders: a cross-matched pilot investigation of the optimal daily dose and timing. Mol Med Rep. 2015 Jun 9; b.

  10. Bosdou JK, Venetis CA, Dafopoulos K, Zepiridis L, Chatzimeletiou K, Anifandis G, et al. Transdermal testosterone pretreatment in poor responders undergoing ICSI: a randomized clinical trial. Hum Reprod. 2016;31(5):977–85.

    Article  CAS  PubMed  Google Scholar 

  11. Bosdou JK, Venetis CA, Kolibianakis EM, Toulis KA, Goulis DG, Zepiridis L, et al. The use of androgens or androgen-modulating agents in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(2):127–45.

    Article  CAS  PubMed  Google Scholar 

  12. Nagels HE, Rishworth JR, Siristatidis CS, Kroon B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2015;11:CD009749.

    Google Scholar 

  13. Sunkara SK, Pundir J, Khalaf Y. Effect of androgen supplementation or modulation on ovarian stimulation outcome in poor responders: a meta-analysis. Reprod BioMed Online. 2011 Jun;22(6):545–55.

    Article  PubMed  Google Scholar 

  14. Gervásio CG, Bernuci MP, Silva-de-Sá MF, Rosa-E-Silva AC. The role of androgen hormones in early follicular development. ISRN Obstet Gynecol. 2014;2014:818010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod. 1999;61(2):353–7.

    Article  CAS  PubMed  Google Scholar 

  16. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84(8):2951–6.

    Article  CAS  PubMed  Google Scholar 

  17. Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab. 1998;83(7):2479–85.

    Article  CAS  PubMed  Google Scholar 

  18. Hillier SG, Tetsuka M, Fraser HM. Location and developmental regulation of androgen receptor in primate ovary. Hum Reprod. 1997;12(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  19. Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: balance is key. J Endocrinol. 2014 Sep;222(3):R141–51.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues JK, Navarro PA, Zelinski MB, Stouffer RL, Xu J. Direct actions of androgens on the survival, growth and secretion of steroids and anti-Müllerian hormone by individual macaque follicles during three-dimensional culture. Hum Reprod. 2015 Mar;30(3):664–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo S, Li S, Li X, Qin L, Jin S. Effect of pretreatment with transdermal testosterone on poor ovarian responders undergoing IVF/ICSI: a meta-analysis. Exp Ther Med. 2014;8(1):187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim CH, Ahn JW, Moon JW, Kim SH, Chae HD, Kang BM. Ovarian features after 2 weeks, 3 weeks and 4 weeks transdermal testosterone gel treatment and their associated effect on IVF outcomes in poor responders. Dev Reprod. 2014;18(3):145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mskhalaya G, Eltsova E, Malysheva M, Lubimkina E, Zaletova V, Kalinchenko S. Testosterone undecanoate treatment in women with poor ovarian response undergoing IVF: pregnancy and live birth rates. Fertil Steril. 2016;106(3, Supplement):e198–9.

    Article  Google Scholar 

  24. Saharkhiz N, Zademodares S, Salehpour S, Hosseini S, Nazari L, Tehrani HG. The effect of testosterone gel on fertility outcomes in women with a poor response in in vitro fertilization cycles: a pilot randomized clinical trial. J Res Med Sci. 2018 Jan 29;23:3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  27. Sipe CS, Thomas MR, Stegmann BJ, Van Voorhis BJ. Effects of exogenous testosterone supplementation in gonadotrophin stimulated cycles. Hum Reprod. 2010 Mar;25(3):690–6.

    Article  CAS  PubMed  Google Scholar 

  28. Singh M, Singh R, Jindal A, Jindal PC. A prospective randomized controlled study depicting favourable IVF outcomes of pretreatment with transdermal-testosterone in poorresponders undergoing ART cycles. Human Reproduction. 2016;31(Issue suppl_1):i1–i513.

    Google Scholar 

  29. Balasch J, Fábregues F, Peñarrubia J, Carmona F, Casamitjana R, Creus M, et al. Pretreatment with transdermal testosterone may improve ovarian response to gonadotrophins in poor-responder IVF patients with normal basal concentrations of FSH. Hum Reprod. 2006 Jul;21(7):1884–93.

    Article  CAS  PubMed  Google Scholar 

  30. Mitri F, Behan LA, Murphy CA, Hershko-Klement A, Casper RF, Bentov Y. Microdose flare protocol with interrupted follicle stimulating hormone and added androgen for poor responders—an observational pilot study. Fertil Steril. 2016 Jan;105(1):100-5.e1–6.

    Article  CAS  Google Scholar 

  31. Doan HT, Quan LH, Nguyen TT. The effectiveness of transdermal testosterone gel 1% (androgel) for poor responders undergoing in vitro fertilization. Gynecol Endocrinol. 2017 Dec;33(12):977–9.

    Article  CAS  PubMed  Google Scholar 

  32. González-Comadran M, Durán M, Solà I, Fábregues F, Carreras R, Checa MA. Effects of transdermal testosterone in poor responders undergoing IVF: systematic review and meta-analysis. Reprod BioMed Online. 2012 Nov;25(5):450–9.

    Article  CAS  PubMed  Google Scholar 

  33. Polyzos NP, Davis SR, Drakopoulos P, Humaidan P, De Geyter C, Vega AG, et al. Testosterone for poor ovarian responders: lessons from ovarian physiology. Reprod Sci. 2016.

  34. Fabregues F, Penarrubia J, Creus M, Manau D, Casals G, Carmona F, et al. Transdermal testosterone may improve ovarian response to gonadotrophins in low-responder IVF patients: a randomized, clinical trial. Hum Reprod. 2009;24(2):349–59.

    Article  CAS  PubMed  Google Scholar 

  35. Kim CH, Howles CM, Lee HA. The effect of transdermal testosterone gel pretreatment on controlled ovarian stimulation and IVF outcome in low responders. Fertil Steril. 2011;95(2):679–83.

    Article  CAS  PubMed  Google Scholar 

  36. Massin N, Cedrin-Durnerin I, Coussieu C, Galey-Fontaine J, Wolf JP, Hugues JN. Effects of transdermal testosterone application on the ovarian response to FSH in poor responders undergoing assisted reproduction technique—a prospective, randomized, double-blind study. Hum Reprod. 2006;21(5):1204–11.

    Article  CAS  PubMed  Google Scholar 

  37. Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111(8):3008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frattarelli JL, Peterson EH. Effect of androgen levels on in vitro fertilization cycles. Fertil Steril. 2004;81(6):1713–4.

    Article  PubMed  Google Scholar 

  39. Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, Abe Y, et al. Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology. 2001;142(11):4930–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hampton JH, Manikkam M, Lubahn DB, Smith MF, Garverick HA. Androgen receptor mRNA expression in the bovine ovary. Domest Anim Endocrinol. 2004;27(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod. 2006;75(6):924–32.

    Article  CAS  PubMed  Google Scholar 

  42. Amirikia H, Savoy-Moore RT, Sundareson AS, Moghissi KS. The effects of long-term androgen treatment on the ovary. Fertil Steril. 1986;45(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  43. Pache TD, Chadha S, Gooren LJ, Hop WC, Jaarsma KW, Dommerholt HB, et al. Ovarian morphology in long-term androgen-treated female to male transsexuals. A human model for the study of polycystic ovarian syndrome? Histopathology. 1991;19(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  44. Spinder T, Spijkstra JJ, Gooren LJ, Hompes PG, van Kessel H. Effects of long-term testosterone administration on gonadotropin secretion in agonadal female to male transsexuals compared with hypogonadal and normal women. J Clin Endocrinol Metab. 1989;68(1):200–7.

    Article  CAS  PubMed  Google Scholar 

  45. Barbieri RL, Sluss PM, Powers RD, McShane PM, Vitonis A, Ginsburg E, et al. Association of body mass index, age, and cigarette smoking with serum testosterone levels in cycling women undergoing in vitro fertilization. Fertil Steril. 2005;83(2):302–8.

    Article  PubMed  Google Scholar 

  46. Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53 Epub 2005 Apr 12.

    Article  CAS  PubMed  Google Scholar 

  47. Ubaldi F, Vaiarelli A, D'Anna R, Rienzi L. Management of poor responders in IVF: is there anything new? Biomed Res Int. 2014;2014:352098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaiarelli A, Cimadomo D, Ubaldi N, Rienzi L, Ubaldi FM. What is new in the management of poor ovarian response in IVF? Curr Opin Obstet Gynecol. 2018 Jun;30(3):155–62.

    PubMed  Google Scholar 

  49. Al-Azemi M, Killick SR, Duffy S, Pye C, Refaat B, Hill N, et al. Multi-marker assessment of ovarian reserve predicts oocyte yield after ovulation induction. Hum Reprod. 2011 Feb;26(2):414–22.

    Article  CAS  PubMed  Google Scholar 

  50. Haahr T, Esteves SC, Humaidan P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol. 2018;16(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lambalk CB, Banga FR, Huirne JA, Toftager M, Pinborg A, Homburg R, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23(5):560–79.

    Article  CAS  PubMed  Google Scholar 

  52. Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org. Comparison of pregnancy rates for poor responders using IVF with mild ovarian stimulation versus conventional IVF: a guideline. Fertil Steril. 2018;109(6):993–9.

    Article  Google Scholar 

  53. Vaiarelli A, Cimadomo D, Trabucco E, Vallefuoco R, Buffo L, Dusi L, et al. Double stimulation in the same ovarian cycle (DuoStim) to maximize the number of oocytes retrieved from poor prognosis patients: a multicenter experience and SWOT analysis. Front Endocrinol (Lausanne). 2018 Jun 14;9:317.

    Article  Google Scholar 

  54. Casson PR, Lindsay MS, Pisarska MD, Carson SA, Buster JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000;15:2129–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

M.N., A.V., G.A., and M.C. conceptualized the study; M.N., M.C., and A.V. extracted the data; A.V. and F.C. performed the statistical analysis; M.N., A.V., A.A., and G.A. performed the data interpretation; M.N., A.A., M.C., and G.A. wrote the manuscript; M.B., P.V., E.P., and M.S. performed the manuscript revision for fundamental intellectual content, language revision, and manuscript re-editing.

Corresponding author

Correspondence to Marco Noventa.

Ethics declarations

Disclosure

All the authors report that they have no conflict of interest.

Ethics approval

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marco Noventa and Amerigo Vitagliano gave the same contribution to the paper. Guido Ambrosini and Mauro Cozzolino gave the same contribution to the paper.

Electronic supplementary material

Table S1

General features and basal hormonal status of patients (treatments and controls) included in this systematic review and meta-analysis divided for each manuscript. (DOCX 19 kb)

Table S2

Data about COS outcomes (treatments vs controls) of patients included in this systematic review and meta-analysis divided for each manuscript. (DOCX 14 kb)

Table S3

Data about IVF outcomes (treatments vs controls) of patients included in this systematic review and meta-analysis divided for each manuscript. (DOCX 17 kb)

Figure S1

Flow diagram of included studies (DOCX 65 kb)

Figure S2

Risk of bias in individual studies evaluated through criteria described in the Cochrane’s Handbook for Systematic Reviews of Interventions (PNG 961 kb)

High-resolution image (TIF 222 kb)

Figure S3a

Forest plot of comparison: live birth rate (LBR) according to administration route of testosterone: transdermal versus oral. Fig. S3b: Forest plot of comparison: clinical pregnancy rate (CPR) according to administration route of testosterone: transdermal versus oral (PNG 2071 kb)

High-resolution image (TIF 1049 kb)

Figure S4a

Forest plot of comparison: live birth rate according to the days of testosterone administration; ≥ 21 days versus < 21 days. Fig. S4b: Forest plot of comparison: clinical pregnancy rate according to the days of testosterone administration; ≥ 21 days versus < 21 days (PNG 2014 kb) (PNG 2014 kb)

High-resolution image (TIF 1022 kb)

Figure S5

Clinical pregnancy rate according to the timing of testosterone administration: before the starting of ovarian stimulation versus during ovarian stimulation (PNG 1076 kb)

High-resolution image (TIF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noventa, M., Vitagliano, A., Andrisani, A. et al. Testosterone therapy for women with poor ovarian response undergoing IVF: a meta-analysis of randomized controlled trials. J Assist Reprod Genet 36, 673–683 (2019). https://doi.org/10.1007/s10815-018-1383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1383-2

Keywords

Navigation