Skip to main content

Advertisement

Log in

Effect of intra-ovarian injection of mesenchymal stem cells in aged mares

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aims to determine if intra-ovarian injection of bone marrow–derived mesenchymal stem cells (MSCs) improves or restores ovarian function in aged females.

Methods

Prospective randomized study of eight aged mares and six young mares receiving intra-ovarian injection of MSCs or vehicle. Main outcome measures were antral follicle count and serum anti-Müllerian hormone (AMH) (aged and young mares), and for aged mares, oocyte meiotic and developmental competence; gross and histological ovarian assessment; evaluation of presence of chimerism in recovered granulosa cells and in ovarian tissue samples; and gene expression in ovarian tissue as assessed by RNA sequencing.

Results

Injection of MSCs was not associated with significant changes in follicle number, oocyte recovery rate on follicle aspiration, oocyte maturation rate, or blastocyst rate after ICSI in aged mares, or in changes in follicle number in young mares. There were no significant changes in peripheral AMH concentrations, indicating a lack of effect on growing follicles. MSC donor DNA was not recovered in granulosa cells or in ovarian tissue, indicating lack of persistence of injected MSC. RNA sequencing revealed significant differences in gene expression between MSC- and vehicle-injected ovaries.

Conclusions

Intra-ovarian injection of bone marrow–derived MSCs altered gene expression but did not improve ovarian function in aged mares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Itay S, Abramovici A, Nevo Z. Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular-cartilage. Clin Orthop. 1987;220:284–303.

    Google Scholar 

  2. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res. 2007;25:913–25.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. 2006;103:17438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des. 2005;11:1255–65.

    Article  CAS  PubMed  Google Scholar 

  5. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003;100:8407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood). 2006;231:39–49.

    Article  CAS  Google Scholar 

  7. Salooja N, Szydlo RM, Socie G, Rio B, Chatterjee R, Ljungman P, et al. Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet. 2001;358:271–6.

    Article  CAS  PubMed  Google Scholar 

  8. Sanders JE, Buckner CD, Amos D, Levy W, Appelbaum FR, Doney K, et al. Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol. 1988;6:813–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sanders JE, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    CAS  PubMed  Google Scholar 

  10. Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Investig. 2013;93:181–93.

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Yu L, Sun M, Mu S, Wang C, Wang D, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int. 2013;2013:690491.

    PubMed  PubMed Central  Google Scholar 

  12. Lee H-J, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25:3198–204.

    Article  CAS  PubMed  Google Scholar 

  13. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10:353–63.

    Article  CAS  PubMed  Google Scholar 

  14. Mohammed Ali AF, et al. Fertility treatment of aged women by laparoscopic intra ovarian injection of peripheral blood mononuclear cell (PBMNC) a new modality. Fertil Mag. 2013;52–5.

  15. Herraiz S, Romeu M, Buigues A, Martinez S, Diaz-Garcia C, Gomez-Segui I, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril. 2018;110:496–505 el.

    Article  PubMed  Google Scholar 

  16. Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carnevale EM, Ginther OJ. Defective oocytes as a cause of subfertility in old mares. Biol Reprod. 1995;Monograph 1:209–14.

    Article  Google Scholar 

  18. Fitzgerald C, Zimon AE, Jones EE. Aging and reproductive potential in women. Yale J Biol Med. 1998;71:367–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Colleoni S, Barbacini S, Necchi D, Duchi R, Lazzari G, Galli C. Application of ovum pick-up, intracytoplasmic sperm injection and embryo culture in equine practice. Proc Am Assoc Equine Pract. 2007;53:554–9.

    Google Scholar 

  20. Jacobson CC, Choi YH, Hayden SS, Hinrichs K. Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology. 2010;73:1116–26.

    Article  PubMed  Google Scholar 

  21. Sellon DC. How to obtain a diagnostic bone marrow sample from the sternum of an adult horse. Proc Am Assoc Equine Pract. 2006;52:621–5.

    Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  23. De Schauwer C, Piepers S, Van de Walle GR, Demeyere K, Hoogewijs MK, Govaere JL, et al. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry A. 2012;81:312–23.

    Article  PubMed  Google Scholar 

  24. Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJ, Fortier LA. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Res Ther. 2014;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitchell A, Rivas KA, Smith R, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. Stem Cell Res Ther. 2015;6:1–12.

    Article  CAS  Google Scholar 

  26. Brück I, Raun K, Synnestvedt B, Greve T. Follicle aspiration in the mare using a transvaginal ultrasound-guided technique (short communication). Equine Vet J. 1992;24:58–9.

    Article  PubMed  Google Scholar 

  27. Choi YH, Ross P, Velez IC, Macias-Garcia B, Riera FL, Hinrichs K. Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations. Reproduction. 2015;150:31–41.

    Article  CAS  PubMed  Google Scholar 

  28. Choi YH, Love LB, Varner DD, Hinrichs K. Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection. Theriogenology. 2006;66:955–63.

    Article  CAS  PubMed  Google Scholar 

  29. Rowland AL, Glass KG, Grady ST, Cummings KJ, Hinrichs K, Watts AE. Influence of caudal epidural analgesia on cortisol concentrations and pain-related behavioral responses in mares during and after ovariectomy via colpotomy. Vet Surg. 2018;47:715–21.

    Article  PubMed  Google Scholar 

  30. Alves KA, Alves BG, Rocha CD, Visonna M, Mohallem RF, Gastal MO, et al. Number and density of equine preantral follicles in different ovarian histological section thicknesses. Theriogenology. 2015;83:1048–55.

    Article  CAS  PubMed  Google Scholar 

  31. van de Goor LH, Panneman H, van Haeringen WA. A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci. Anim Genet. 2010;41:122–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bowling AT, Del Valle A, Bowling M. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses. Anim Genet. 2000;31:1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;btu170.

  34. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Meth. 2015;12:357–60.

    Article  CAS  Google Scholar 

  35. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;btu638.

  36. Love M, Anders S, Huber W. Differential analysis of count data—the DESeq2 package. Genome Biol. 2014;15:550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang JL. Comparative investigation of three Bayesian p values. Comput Stat Data Anal. 2014;79:277–91.

    Article  Google Scholar 

  38. Hinrichs K, Schmidt AL. Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season. Biol Reprod. 2000;62:1402–8.

    Article  CAS  PubMed  Google Scholar 

  39. Velez I, Arnold C, Jacobson C, Norris J, Choi Y, Edwards J, et al. Effects of repeated transvaginal aspiration of immature follicles on mare health and ovarian status. Equine Vet J. 2012;44:78–83.

    Article  Google Scholar 

  40. Duchamp G, Bézard J, Palmer E. Oocyte yield and the consequences of puncture of all follicles larger than 8 millimetres in mares. Biol Reprod. 1995;Monograph 1:233–41.

    Article  Google Scholar 

  41. Abd-Allah SH, Shalaby SM, Pasha HF, El-Shal AS, Raafat N, Shabrawy SM, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy. 2013;15:64–75.

    Article  CAS  PubMed  Google Scholar 

  42. Ghadami M, El-Demerdash E, Zhang D, Salama SA, Binhazim AA, Archibong AE, et al. Bone marrow transplantation restores follicular maturation and steroid hormones production in a mouse model for primary ovarian failure. PLoS One. 2012;7:e32462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosen C, Shezen E, Aronovich A, Klionsky YZ, Yaakov Y, Assayag M, et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med. 2015;21:869–79.

    Article  CAS  PubMed  Google Scholar 

  44. Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res. 2009;27:1392–8.

    Article  CAS  PubMed  Google Scholar 

  45. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354:700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103:1283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Claes A, Ball BA, Scoggin KE, Esteller-Vico A, Kalmar JJ, Conley AJ et al. The interrelationship between anti-Mullerian hormone, ovarian follicular populations and age in mares. Equine Vet J. 2014.

  48. Behnam B, Modarressi MH, Conti V, Taylor KE, Puliti A, Wolfe J. Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochem Biophys Res Commun. 2006;344:1102–10.

    Article  CAS  PubMed  Google Scholar 

  49. Mobasheri MB, Jahanzad I, Mohagheghi MA, Aarabi M, Farzan S, Modarressi MH. Expression of two testis-specific genes, TSGA10 and SYCP3, in different cancers regarding to their pathological features. Cancer Detect Prev. 2007;31:296–302.

    Article  CAS  PubMed  Google Scholar 

  50. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–D5.

    Article  CAS  PubMed  Google Scholar 

  51. Small CL, Shima JE, Uzumcu M, Skinner MK, Griswold MD. Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol Reprod. 2005;72:492–501.

    Article  CAS  PubMed  Google Scholar 

  52. Kenigsberg S, Bentov Y, Chalifa-Caspi V, Potashnik G, Ofir R, Birk OS. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients. Mol Hum Reprod. 2009;15:89–103.

    Article  CAS  PubMed  Google Scholar 

  53. Miryounesi M, Nayernia K, Mobasheri MB, Dianatpour M, Oko R, Savad S, et al. Evaluation of in vitro spermatogenesis system effectiveness to study genes behavior: monitoring the expression of the testis specific 10 (Tsga10) gene as a model. Arch Iran Med. 2014;17:692–7.

    PubMed  Google Scholar 

  54. Tanaka R, Ono T, Sato S, Nakada T, Koizumi F, Hasegawa K, et al. Over-expression of the testis-specific gene TSGA10 in cancers and its immunogenicity. Microbiol Immunol. 2004;48:339–45.

    Article  CAS  PubMed  Google Scholar 

  55. Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: biological functions and regulation. FEBS Lett. 2014;588:2671–84.

    Article  CAS  PubMed  Google Scholar 

  56. Lee C-M, Yang P, Chen L-C, Chen C-C, Wu S-C, Cheng H-Y, et al. A novel role of RASSF9 in maintaining epidermal homeostasis. PLoS One. 2011;6:e17867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73:4249–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res. 1990;40:264–78.

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T, et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res. 1997;57:615–9.

    CAS  PubMed  Google Scholar 

  60. Joswig AJ, Mitchell A, Cummings KJ, Levine GJ, Gregory CA, Smith R 3rd, et al. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther. 2017;8:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andrew Hillhouse for his help with RNA isolation; Dr. Gus Wright for his help with flow cytometry analyses; Dr. Young Ho Choi for performing ICSI on the recovered oocytes; Hsing Fann for her help with MSC culture, freezing, and thawing for intra-ovarian injections; and Angel del Valle for his help with mtDNA sequencing. The authors acknowledge Texas A&M Institute for Genome Sciences and Society (TIGSS) for providing computational resources for RNA-Seq data analysis and systems administration support for the TIGSS HPC Cluster.

Funding

Funded by the Clinical Equine ICSI Program at Texas A&M University, the Link Equine Research Fund at Texas A&M University, and a Postdoctoral Trainee Research Grant and a Graduate Student Core Facility Experiential Learning Program Grant from the College of Veterinary Medicine and Biomedical Sciences. S.T.G. was funded in part by a Texas A&M College of Veterinary Medicine & Biomedical Sciences Merit Scholars Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Hinrichs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grady, S.T., Watts, A.E., Thompson, J.A. et al. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J Assist Reprod Genet 36, 543–556 (2019). https://doi.org/10.1007/s10815-018-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1371-6

Keywords

Navigation