Skip to main content
Log in

Human sperm Toll-like receptor 4 (TLR4) mediates acrosome reaction, oxidative stress markers, and sperm parameters in response to bacterial lipopolysaccharide in infertile men

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the role of Toll-like receptor 4 (TLR4) in human spermatozoa and to assess sperm parameters, oxidative stress markers, and acrosome reaction in response to the stimulation of TLR4 by its ligand, the lipopolysaccharide (LPS), as a major endotoxin of Gram-negative bacteria.

Methods

Our study was carried out in 73 sperm samples from patients undergoing semen analysis for couple infertility investigations. The studied patients were divided into three groups: normozoospermic fertile patients (n = 13), patients with abnormal and leukospermic semen (n = 13), and patients with abnormal and non-leukospermic semen (n = 47). TLR4 expression in human spermatozoa was initially analyzed by western blot. Sperm samples were incubated in the presence of LPS (200 ng/ml) for 18 h. Then, sperm motility and vitality were evaluated by microscopic observation and oxidative stress markers as malondialdehyde (MDA) and carbonyl groups (CG) were spectrophotometrically assessed in neat and selected sperm. A triple-stain technique was also performed to evaluate acrosome reaction in 15 sperm samples from infertile patients.

Results

TLR4 expression was confirmed in human spermatozoa with a molecular weight of 69 kDa. In the normozoospermic group, no significant differences in sperm parameters and oxidative stress markers were shown after incubation with LPS in neat and selected sperms. Regarding samples from the non-leukospermic group, LPS reduced spermatozoa motility and vitality rates in selected sperm (P = 0.003; P = 0.004, respectively). A significant increase of MDA and CG levels was also detected (P = 0.01; P = 0.02, respectively). However, only the MDA levels were significantly increased (P = 0.01) in neat LPS-stimulated sperm. The same results were shown within the leukospermic group. The comparison between the two groups, leukospermic and non-leukospermic, in selected sperms showed a more important LPS effect in the leukospermic group significantly on motility and MDA rates (P = 0.006; P = 0.009, respectively). Furthermore, a significant decrease in reacted spermatozoa rate was detected in response to LPS in selected sperm samples from infertile men (P = 0.03).

Conclusions

These findings indicate that human spermatozoa express TLR4 and respond to LPS stimulation with alterations in viability, motility, and the acrosome reaction implicating reactive oxygen species (ROS) production in sperm samples from infertile patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carlsen E, Andersson AM, Petersen JH, Skakkebaek NE. History of febrile illness and variation in semen quality. Hum Reprod. 2003;18:2089–2.

    Article  PubMed  Google Scholar 

  2. Nariculam J, Minhas S, Adeniyi A, Ralph DJ, Freeman A. Review of the efficacity of surgical treatment for and pathological changes in patients with chronic scrotal pain. BJU Int. 2007;99:1091–3.

    Article  PubMed  Google Scholar 

  3. Brecchia G, Cardinali R, Mourvaki E, Collodel G, Moretti E, Dal Bosco A, et al. Short- and long-term effects of lipopolysaccharide induced inflammation on rabbit sperm quality. Anim Reprod Sci. 2010;118:310–6.

    Article  CAS  PubMed  Google Scholar 

  4. Metukuri MR, Reddy CM, Reddy PR, Reddanna P. Bacterial LPS-mediated acute inflammation-induced spermatogenic failure in rats: role of stress response proteins and mitochondrial dysfunction. Inflammation. 2010;33:235–3.

    Article  CAS  PubMed  Google Scholar 

  5. Winnal WR, Hedger MP. Differential responses of epithelial Sertoli cells of the rat testis to toll-like receptor 2 and 4 ligands: implications for studies of testicular inflammation using bacterial lipopolysaccharides. J Innate Immun. 2011;17:123–36.

    Article  Google Scholar 

  6. Aly HA, Lightfoot DA, El-Shemy HA. Bacterial lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Toxicol in Vitro. 2010;24:1266–72.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang M, Nii T, Isobe N, Yoshimura Y. Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters. Poult Sci. 2012;91:1997–2003.

    Article  CAS  PubMed  Google Scholar 

  8. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg HR, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42.

    Article  CAS  PubMed  Google Scholar 

  9. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14:243–58.

    Article  CAS  PubMed  Google Scholar 

  10. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.

    Article  CAS  PubMed  Google Scholar 

  11. Yun SB, Jee HL, Soo HC, Sunah K, Felicidad A, Joseph LW, et al. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk dependent activation of Nox2. Circ Res. 2009;104:210–8.

    Article  Google Scholar 

  12. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NADPH oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol. 2004;173:3589–93.

    Article  CAS  PubMed  Google Scholar 

  13. Mark P. Toll-like receptors and signaling in spermatogenesis and responses to inflammation-aperspective. J Reprod Immunol. 2011;88:130–41.

    Article  Google Scholar 

  14. Shoulong D, Kun Y, Baolu Z, Yuchang Y, Zhixian W, Jinlong Z, et al. Toll-like receptor 4 promotes NO synthesis by upregulating GCHI expression under oxidative stress conditions in sheep monocytes/macrophages. Oxidative Med Cell Longev. 2015;2015:359315.

    Google Scholar 

  15. Beutler BA. TLRs and innate immunity. Blood. 2009;113:1399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res. 2010;59:791–808.

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura M, Naito S. Tissue-specific Mrna expression profiles of human toll-like receptors and related genes. Biol Pharm Bull. 2005;28:886–92.

    Article  CAS  PubMed  Google Scholar 

  18. Saeidi S, Shapouri F, Amirchaghmaghi E, Hoseinifar H, Sabbaghian M, SadighiGilani MA, et al. Sperm protection in the male reproductive tract by Toll-like. Recept Androl. 2014;46:784–90.

    Article  CAS  Google Scholar 

  19. Palladino MA, Johnson TA, Gupta R, Chapman JL, Ojha P. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol Reprod. 2007;76:958–64.

    Article  CAS  PubMed  Google Scholar 

  20. Palladino MA, Savarese MA, Chapman JL, Dughi MK, Plaska D. Localization of Toll-like receptors on epididymal epithelial cells and spermatozoa. Am J Reprod Immunol. 2008;60:541–55.

    Article  CAS  PubMed  Google Scholar 

  21. Bhushan S, Tchatalbachev S, Klug J, Fijak M, Pineau C, Chakraborty T, et al. Uropathogenic Escherichia coli block MyD88- dependent and activate MyD88 independent signaling pathways in rat testicular cells. J Immunol. 2008;180:5537–47.

    Article  CAS  PubMed  Google Scholar 

  22. Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, et al. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod. 2011;26:2799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagan S, Khurana N, Chandra S, Abdel-Mageed AB, Mondal D, Hellstrom WJG, et al. Differential expression of novel biomarkers (TLR-2, TLR-4, COX-2, and Nrf-2) of inflammation and oxidative stress in semen of leukocytospermia patients. Andrology. 2015;3:848–55.

    Article  CAS  PubMed  Google Scholar 

  24. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenyleneiodonium and quinacrine. Mol Reprod Dev. 1997;47:468–82.

    Article  CAS  PubMed  Google Scholar 

  25. Bánfi B, Molnár G, Maturana A, Steger K, Hegedûs B, Demaurex N, et al. A Ca (2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001;276:37594–601.

    Article  PubMed  Google Scholar 

  26. Musset B, Clark RA, DeCoursey TE, Petheo GL, Geiszt M, Chen Y, et al. NOX5 in human spermatozoa: expression, function, and regulation. J Biol Chem. 2012;287:9376–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomez E, Buckingham D, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress and sperm function. J Androl. 1996;17:276–87.

    CAS  PubMed  Google Scholar 

  28. Lewis SE, Donnelly ET, Sterling ES, Kennedy MS, Thompson W, et al. Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol Hum Reprod. 1996;2:873–8.

    Article  CAS  PubMed  Google Scholar 

  29. World Health Organization. Laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO; 2010.

    Google Scholar 

  30. Chandrasekhar A, Laloraya M, Kumar PG. Modulation of nicotinamide adenine dinucleotide phosphate oxidase activity through sequential post translational modifications of p22 phagocytic oxidase during capacitation and acrosome reaction in goat spermatozoa. J Anim Sci. 2011;89:2995–3007.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  32. Buege J, Aust S. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10.

    Article  CAS  PubMed  Google Scholar 

  33. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  34. Kitiyanant Y, Chaisalee B, Pavasuthipaisit K. Evaluation of the acrosome reaction and viability in buffalo spermatozoa using two staining methods: the effects of heparin and calcium ionophore A23187. Int J Androl. 2002;25:215–22.

    Article  CAS  PubMed  Google Scholar 

  35. Talbot P, Chacon RS. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981;215:201–8.

    Article  CAS  PubMed  Google Scholar 

  36. Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, Yoshikai Y. Cutting edge: naturally occurring soluble form of mouse toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol. 2000;165:6682–6.

    Article  CAS  PubMed  Google Scholar 

  37. Janardhan KS, McIsaac M, Fowlie J, Shrivastav A, Caldwell S, Sharma RK, et al. Toll like receptor-4 expression in lipopolysaccharide induced lung inflammation. Histol Histopathol. 2006;21:687–96.

    CAS  PubMed  Google Scholar 

  38. Hosseinzadeh S, Pacey AA, Eley A. Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. J Med Microbiol. 2003;52:193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Zhongyuan L, Dahu Z, Yuanqiao H, Zhiyong D, Fei M, Tao L, et al. Lipopolysaccharide compromises human sperm function by reducing intracellular cAMP. Tohoku J Exp Med. 2016;238:105–12.

    Article  Google Scholar 

  40. Gow RM, O’Bryan MK, Canny BJ, Ooi GT, Hedger MP. Differential effects of dexamethasone treatment on lipopolysaccharide induced testicular inflammation and reproductive hormone inhibition in adult rats. J Endocrinol. 2001;168:193–201.

    Article  CAS  PubMed  Google Scholar 

  41. Ochsendorf FR, Buhl R, Bastlein A, Beschmann H. Glutathione in spermatozoa and seminal plasma of infertile men. Hum Reprod. 1998;13:353–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31:531–7.

    Article  CAS  PubMed  Google Scholar 

  43. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991;88:11003–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urata K, Narahara H, Tanaka Y, Egashira T, Takayama F, Miyakawa. Effect of endotoxin-induced reactive oxygen species on sperm motility. Fertil Steril. 2001;76:163–6.

    Article  CAS  PubMed  Google Scholar 

  45. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Christopher A, Anthony R, Tricia A, Scott H, Joseph E N. LPS-stimulated RAW 264.7 macrophage inducible nitric oxide synthase (iNOS) and nitric oxide production is decreased by an omega-3 fatty acid lipid emulsion. J Surg Res. 2008;149:296–302.

    Article  Google Scholar 

  47. Sa T, Cheryl LS, Elebeoba EM. Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One. 2016;11(6):e0153289.

    Article  Google Scholar 

  48. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cloonan SM, Choi AM. Mitochondria: sensors and mediators of innate immune receptor signaling. Curr Opin Microbiol. 2013;16:327–38.

    Article  CAS  PubMed  Google Scholar 

  50. De Lamirande E, Lamothe G, Villemure M. Control of superoxide and nitric oxide formation during human sperm capacitation. Free Radic Biol Med. 2009;46:1420–7.

    Article  CAS  PubMed  Google Scholar 

  51. Griveau JF, Renard P, Le Lannou D. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl. 1994;17:300–7.

    Article  CAS  PubMed  Google Scholar 

  52. Revelli A, Costamagna C, Moffa F, Aldieri E, Ochetti S, Bosia A, et al. Signaling pathway of nitric oxide-induced acrosome reaction in human spermatozoa. Biol Reprod. 2001;64:1708–12.

    Article  CAS  PubMed  Google Scholar 

  53. Rosselli M, Dubey RK, Imthurn B, Macas E, Keller PJ. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum Reprod. 1995;10:1786–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of the Higher Institute of Biotechnology, Sfax, and Mrs. Olfa Abida, a member of Autoimmunity and Immunogenetics Research Unit, Habib Bourguiba Hospital, Sfax, who generously contributed to this study. We thank also Mr. Mourad Ben Hmida for his helpful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Sahnoun.

Ethics declarations

This study was approved by the Institutional Review Board (IRB) of Medicine Faculty of Sfax, Tunisia. Informed written consent was obtained from all patients for being included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahnoun, S., Sellami, A., Chakroun, N. et al. Human sperm Toll-like receptor 4 (TLR4) mediates acrosome reaction, oxidative stress markers, and sperm parameters in response to bacterial lipopolysaccharide in infertile men. J Assist Reprod Genet 34, 1067–1077 (2017). https://doi.org/10.1007/s10815-017-0957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0957-8

Keywords

Navigation