Skip to main content
Log in

Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3′-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development.

Methods

The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists’ (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts.

Result(s)

Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50–85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60–90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively.

Conclusion

These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duranteau L, Lefevre P, Jeandidier N, Simon T, Christin-Maitre S. Should physicians prescribe metformin to women with polycystic ovary syndrome PCOS? Ann Endocrinol (Paris). 2010;71:25–7.

    Article  CAS  Google Scholar 

  2. Palomba S, Pasquali R, Orio Jr F, Nestler JE. Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin Endocrinol (Oxf). 2009;70:311–21.

    Article  CAS  Google Scholar 

  3. Sinawat S, Buppasiri P, Lumbiganon P, Pattanittum P. Long versus short course treatment with metformin and clomiphene citrate for ovulation induction in women with PCOS. Cochrane Database Syst Rev 2008:CD006226.

  4. Jamal A, Milani F, Al-Yasin A. Evaluation of the effect of metformin and aspirin on utero placental circulation of pregnant women with PCOS. Iran J Reprod Med. 2012;10:265–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. de Oliveira Baraldi C, Lanchote VL, de Jesus Antunes N, de Jesus Ponte Carvalho TM, Dantas Moises EC, Duarte G, et al. Metformin pharmacokinetics in nondiabetic pregnant women with polycystic ovary syndrome. Eur J Clin Pharmacol. 2011;67:1027–33.

    Article  PubMed  CAS  Google Scholar 

  6. Vause TD, Cheung AP, Sierra S, Claman P, Graham J, Guillemin JA, et al. Ovulation induction in polycystic ovary syndrome. J Obstet Gynaecol Can. 2010;32:495–502.

    Article  PubMed  Google Scholar 

  7. Jungheim ES, Odibo AO. Fertility treatment in women with polycystic ovary syndrome: a decision analysis of different oral ovulation induction agents. Fertil Steril. 2010;94:2659–64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Genazzani AD, Ricchieri F, Lanzoni C. Use of metformin in the treatment of polycystic ovary syndrome. Womens Health (Lond Engl). 2010;6:577–93.

    Article  CAS  Google Scholar 

  9. Palomba S, Falbo A, Russo T, Orio F, Tollino A, Zullo F. Role of metformin in patients with polycystic ovary syndrome: the state of the art. Minerva Ginecol. 2008;60:77–82.

    CAS  PubMed  Google Scholar 

  10. Escobar-Morreale HF. Polycystic ovary syndrome: treatment strategies and management. Expert Opin Pharmacother. 2008;9:2995–3008.

    Article  PubMed  Google Scholar 

  11. Moll E, van der Veen F, van Wely M. The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Update. 2007;13:527–37.

    Article  CAS  PubMed  Google Scholar 

  12. Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356:551–66.

    Article  CAS  PubMed  Google Scholar 

  13. Cheang KI, Sharma ST, Nestler JE. Is metformin a primary ovulatory agent in patients with polycystic ovary syndrome? Gynecol Endocrinol. 2006;22:595–604.

    Article  CAS  PubMed  Google Scholar 

  14. Carrington B, Sacks G, Regan L. Recurrent miscarriage: pathophysiology and outcome. Curr Opin Obstet Gynecol. 2005;17:591–7.

    Article  PubMed  Google Scholar 

  15. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55:224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Del Priore G, Gudipudi DK, Montemarano N, Restivo AM, Malanowska-Stega J, Arslan AA. Oral diindolylmethane (DIM): pilot evaluation of a nonsurgical treatment for cervical dysplasia. Gynecol Oncol. 2010;116:464–7.

    Article  PubMed  CAS  Google Scholar 

  19. Ribaux P, Irion O, Cohen M. An active product of cruciferous vegetables, 3,3'-diindolylmethane, inhibits invasive properties of extravillous cytotrophoblastic cells. Neuro Endocrinol Lett. 2012;33:133–7.

    CAS  PubMed  Google Scholar 

  20. Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst. 2000;92:61–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. Activation of AMP-activated protein kinase by 3,3'-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS ONE. 2012;7, e47186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol Reprod. 2006;74:585–92.

    Article  CAS  PubMed  Google Scholar 

  23. Louden ED, Luzzo KM, Jimenez PT, Chi T, Chi M, Moley KH. TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin. Reprod Fertil Dev. 2014;27:31–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Louden E, Chi MM, Moley KH. Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction. 2008;136:335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ratchford AM, Chang AS, Chi MM, Sheridan R, Moley KH. Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. Am J Physiol Endocrinol Metab. 2007;293:E1198–206.

    Article  CAS  PubMed  Google Scholar 

  26. Solano ME, Elia E, Luchetti CG, Sander V, Di Girolamo G, Gonzalez C, et al. Metformin prevents embryonic resorption induced by hyperandrogenisation with dehydroepiandrosterone in mice. Reprod Fertil Dev. 2006;18:533–44.

    Article  CAS  PubMed  Google Scholar 

  27. Larosa C, Downs SM. Meiotic induction by heat stress in mouse oocytes: involvement of AMP-activated protein kinase and MAPK family members. Biol Reprod. 2007;76:476–86.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Hudson E, Chi MM, Chang AS, Moley KH, Hardie DG et al. AMPK regulation of mouse oocyte meiotic resumption in vitro. Dev Biol 2006.

  29. Rappolee DA. Impact of transient stress and stress enzymes on development. Dev Biol. 2007;304:1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol. 2015;843:77–128.

    Article  PubMed  Google Scholar 

  31. Mansouri L, Xie Y, Rappolee DA. Adaptive and pathogenic responses to stress by stem cells during development. Cells. 2012;1:1197–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie Y, Awonuga AO, Zhou S, Puscheck EE, Rappolee DA. Interpreting the stress response of early mammalian embryos and their stem cells. Int Rev Cell Mol Biol. 2011;287:43–95.

    Article  CAS  PubMed  Google Scholar 

  33. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144:5179–83.

    Article  CAS  PubMed  Google Scholar 

  34. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999;277:E1–10.

    CAS  PubMed  Google Scholar 

  35. Hardie DG. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology. 2006;131:973. author reply 4-5.

    Article  PubMed  Google Scholar 

  36. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002;277:25226–32.

    Article  CAS  PubMed  Google Scholar 

  37. Yue W, Wang T, Zachariah E, Lin Y, Yang CS, Xu Q, et al. Transcriptomic analysis of pancreatic cancer cells in response to metformin and aspirin: an implication of synergy. Sci Rep. 2015;5:13390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yue W, Yang CS, DiPaola RS, Tan XL. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res. 2014;7:388–97.

    Article  CAS  Google Scholar 

  39. Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468:125–32.

    Article  CAS  PubMed  Google Scholar 

  40. Downs SM, Hudson ER, Hardie DG. A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes. Dev Biol. 2002;245:200–12.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, et al. Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction. 2010;140:921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chae HD, Lee MR, Broxmeyer HE. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells. 2012;30:140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vazquez-Martin A, Vellon L, Quiros PM, Cufi S, Ruiz de Galarreta E, Oliveras-Ferraros C, et al. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle. 2012;11:974–89.

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck E, Rappolee D. Departure from optimal 2% O2 level for TSC potency and proliferation leads to most rapid increases in AMPK activity. Submitted to Placenta 2015.

  45. Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA. Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells [corrected]. Stem Cells Dev. 2013;22:1564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie Y, Abdallah ME, Awonuga AO, Slater JA, Puscheck EE, Rappolee DA. Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Mol Reprod Dev. 2010;77:533–9.

    Article  CAS  PubMed  Google Scholar 

  47. Guo Y, Mantel C, Hromas RA, Broxmeyer HE. Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells. 2008;26:30–4.

    Article  CAS  PubMed  Google Scholar 

  48. Kang J, Shakya A, Tantin D. Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci. 2009;34:491–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, et al. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev. 2009;23:208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell. 2013;25:610–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  CAS  PubMed  Google Scholar 

  52. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hogan B, Beddington R, Constantini F, Lacy B. Manipulating the mouse embryo: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2002.

    Google Scholar 

  54. Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, Wang F, Rappolee DA. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril. 2005;83 Suppl 1:1144–54.

    Article  CAS  PubMed  Google Scholar 

  55. Zhong W, Xie Y, Wang Y, Lewis J, Trostinskaia A, Wang F, et al. Use of hyperosmolar stress to measure stress-activated protein kinase activation and function in human HTR cells and mouse trophoblast stem cells. Reprod Sci. 2007;14:534–47.

    Article  CAS  PubMed  Google Scholar 

  56. Xie Y, Zhong W, Wang Y, Trostinskaia A, Wang F, Puscheck EE, et al. Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos. Mol Hum Reprod. 2007;13:473–81.

    Article  CAS  PubMed  Google Scholar 

  57. An Y, Sun Z, Li L, Zhang Y, Ji H. Relationship between psychological stress and reproductive outcome in women undergoing in vitro fertilization treatment: psychological and neurohormonal assessment. J Assist Reprod Genet. 2013;30:35–41.

    Article  PubMed  Google Scholar 

  58. Lee HY, Wei D, Loeken MR. Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy. Diabetes Metab Res Rev. 2014;30:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu Y, Viana M, Thirumangalathu S, Loeken MR. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia. 2012;55:245–54.

    Article  CAS  PubMed  Google Scholar 

  60. Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, Pchelintseva O. Comparative preclinical pharmacokinetics study of 3,3'-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon? EPMA J. 2013;4:25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ross-Lee LM, Elms MJ, Cham BE, Bochner F, Bunce IH, Eadie MJ. Plasma levels of aspirin following effervescent and enteric coated tablets, and their effect on platelet function. Eur J Clin Pharmacol. 1982;23:545–51.

    Article  CAS  PubMed  Google Scholar 

  62. Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109:1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Y, Arenas-Hernandez M, Gomez-Lopez N, Dai J, Puscheck E, Rappolee D. Hypoxic stress forces large, irreversible trophoblast stem cell differentiation. Biol Reprod. 2016;Submitted.

  64. Li Q, Gomez-Lopez N, Drewlo S, Sanchez-Rodriquez E, Dai J, Puscheck EE et al. Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem Cells Dev 2015.

  65. Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev. 2014;23:3049–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McRae AC, Church RB. Cytoplasmic projections of trophectoderm distinguish implanting from preimplanting and implantation-delayed mouse blastocytes. J Reprod Fertil. 1990;88:31–40.

    Article  CAS  PubMed  Google Scholar 

  67. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril. 2015;104:1138–44.

    Article  PubMed  Google Scholar 

  68. Rice S, Elia A, Jawad Z, Pellatt L, Mason HD. Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98:E1491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kovacs G. How to improve your ART success rates: an evidence-based review of adjuncts to IVF. Cambridge. New York: Cambridge University Press; 2011.

    Book  Google Scholar 

  70. Palomba S, Orio Jr F, Russo T, Falbo A, Cascella T, Colao A, et al. Is ovulation induction still a therapeutic problem in patients with polycystic ovary syndrome? J Endocrinol Invest. 2004;27:796–805.

    Article  CAS  PubMed  Google Scholar 

  71. Kashyap S, Wells GA, Rosenwaks Z. Insulin-sensitizing agents as primary therapy for patients with polycystic ovarian syndrome. Hum Reprod. 2004;19:2474–83.

    Article  CAS  PubMed  Google Scholar 

  72. Ben-Haroush A, Yogev Y, Fisch B. Insulin resistance and metformin in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2004;115:125–33.

    Article  CAS  PubMed  Google Scholar 

  73. Barbieri RL. Metformin for the treatment of polycystic ovary syndrome. Obstet Gynecol. 2003;101:785–93.

    CAS  PubMed  Google Scholar 

  74. Nestler JE, Stovall D, Akhter N, Iuorno MJ, Jakubowicz DJ. Strategies for the use of insulin-sensitizing drugs to treat infertility in women with polycystic ovary syndrome. Fertil Steril. 2002;77:209–15.

    Article  PubMed  Google Scholar 

  75. Phipps WR. Polycystic ovary syndrome and ovulation induction. Obstet Gynecol Clin N Am. 2001;28:165–82.

    Article  CAS  Google Scholar 

  76. Taylor R, Marsden PJ. Insulin sensitivity and fertility. Hum Fertil (Camb). 2000;3:65–9.

    Article  Google Scholar 

  77. Goldenberg N, Glueck CJ. Is pharmacogenomics our future? Metformin, ovulation and polymorphism of the STK11 gene in polycystic ovary syndrome. Pharmacogenomics. 2008;9:1163–5.

    Article  CAS  PubMed  Google Scholar 

  78. Chen J, Hudson E, Chi MM, Chang AS, Moley KH, Hardie DG, et al. AMPK regulation of mouse oocyte meiotic resumption in vitro. Dev Biol. 2006;291:227–38.

    Article  CAS  PubMed  Google Scholar 

  79. Patel Y, Kim H, Rappolee DA. A role for hepatocyte growth factor during early postimplantation growth of the placental lineage in mice. Biol Reprod. 2000;62:904–12.

    Article  CAS  PubMed  Google Scholar 

  80. Awonuga AO, Zhong W, Abdallah ME, Slater JA, Zhou SC, Xie YF, et al. Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner. Mol Reprod Dev. 2011;78:519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Q, Louden E, Dai J, Furcron A, Gomez-Lopez N, Drewlo S et al. Stress forces first lineage differentiation of mouse ESCs, validation of a high throughput screen for toxicant stress. Development 2016;manuscript in preparation.

  82. Li Q, Gomez-Lopez N, Drewlo S, Sanchez-Rodriguez E, Dai J, Puscheck EE, et al. Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem Cells Dev. 2016;25:320–8.

    Article  CAS  PubMed  Google Scholar 

  83. Goolam M, Scialdone A, Graham SJ, Macaulay IC, Jedrusik A, Hupalowska A, et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell. 2016;165:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lutwak-Mann C, Laser H. Bicarbonate content of the blastocyst fluid and carbonic anhydrase in the pregnant rabbit uterus. Nature. 1954;173:268–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lutwak-Mann C, Hay MF. Effect on the early embryo of agents administered to the mother. Br Med J. 1962;2:944–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fabro S. Penetration of chemicals into the oocyte, uterine fluid, and preimplantation blastocyst. Environ Health Perspect. 1978;24:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fabro S, McLachlan JA, Dames NM. Chemical exposure of embryos during the preimplantation stages of pregnancy: mortality rate and intrauterine development. Am J Obstet Gynecol. 1984;148:929–38.

    Article  CAS  PubMed  Google Scholar 

  88. Nielsen GL, Sorensen HT, Larsen H, Pedersen L. Risk of adverse birth outcome and miscarriage in pregnant users of non-steroidal anti-inflammatory drugs: population based observational study and case-control study. BMJ. 2001;322:266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cerletti C, Bonati M, del Maschio A, Galletti F, Dejana E, Tognoni G, et al. Plasma levels of salicylate and aspirin in healthy volunteers: relevance to drug interaction on platelet function. J Lab Clin Med. 1984;103:869–77.

    CAS  PubMed  Google Scholar 

  90. Ying Y, Cai YX, Lou YJ. Effects of blastocyst deficiencies induced by aspirin treatment during preimplantation period in rats on development of embryos after implantation. Yao Xue Xue Bao. 1996;31:416–9.

    CAS  PubMed  Google Scholar 

  91. Ying Y, Lou YJ. Effects of preimplantation treatment with aspirin and acetaminophen on blastocyst and fetus in rats. Zhongguo Yao Li Xue Bao. 1993;14:369–72.

    CAS  PubMed  Google Scholar 

  92. Vanky E, Zahlsen K, Spigset O, Carlsen SM. Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril. 2005;83:1575–8.

    Article  PubMed  Google Scholar 

  93. Enders AC. Trophoblast-uterine interactions in the first days of implantation: models for the study of implantation events in the human. Semin Reprod Med. 2000;18:255–63.

    Article  CAS  PubMed  Google Scholar 

  94. Enders AC, Lantz KC, Peterson PE, Hendrickx AG. From blastocyst to placenta: the morphology of implantation in the baboon. Hum Reprod Update. 1997;3:561–73.

    Article  CAS  PubMed  Google Scholar 

  95. Bedaiwy MA, Miller KF, Goldberg JM, Nelson D, Falcone T. Effect of metformin on mouse embryo development. Fertil Steril. 2001;76:1078–9.

    Article  CAS  PubMed  Google Scholar 

  96. Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S, et al. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem. 2007;282:21542–50.

    Article  CAS  PubMed  Google Scholar 

  97. Caille G, Lacasse Y, Raymond M, Landriault H, Perrotta M, Picirilli G, et al. Bioavailability of metformin in tablet form using a new high pressure liquid chromatography assay method. Biopharm Drug Dispos. 1993;14:257–63.

    Article  CAS  PubMed  Google Scholar 

  98. Levy G. Comparative pharmacokinetics of aspirin and acetaminophen. Arch Intern Med. 1981;141:279–81.

    Article  CAS  PubMed  Google Scholar 

  99. Anderton MJ, Manson MM, Verschoyle RD, Gescher A, Lamb JH, Farmer PB, et al. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res. 2004;10:5233–41.

    Article  CAS  PubMed  Google Scholar 

  100. Xie Y, Wang F, Puscheck EE, Rappolee DA. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev. 2007;74:1287–94.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang H, Legro RS, Zhang J, Zhang L, Chen X, Huang H, et al. Decision trees for identifying predictors of treatment effectiveness in clinical trials and its application to ovulation in a study of women with polycystic ovary syndrome. Hum Reprod. 2010;25:2612–21.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Palomba S, Falbo A, Russo T, Orio F, Tolino A, Zullo F. Systemic and local effects of metformin administration in patients with polycystic ovary syndrome (PCOS): relationship to the ovulatory response. Hum Reprod. 2010;25:1005–13.

    Article  CAS  PubMed  Google Scholar 

  103. O'Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, et al. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J. 2015;469:177–87.

    Article  PubMed  CAS  Google Scholar 

  104. Xie Y, Zhou S, Jiang Z, Dai J, Puscheck EE, Lee I, et al. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res. 2014;13:478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou S, Xie Y, Puscheck EE, Rappolee DA. Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta. 2011;32:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abdulhasan M, Yang Y, Dai J, Folger J, Cibelli J, Shubber A et al. CoQ10 improves bovine oocyte IVM, increases ATP and potency factor levels while maintaining decreased AMPK activity and stress marker levels. Biol Reprod. 2015;To be submitted.

  107. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature. 2013;503:360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leichsenring M, Maes J, Mossner R, Driever W, Onichtchouk D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science. 2013;341:1005–9.

    Article  CAS  PubMed  Google Scholar 

  109. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005;123:917–29.

    Article  CAS  PubMed  Google Scholar 

  110. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132:2093–102.

    Article  CAS  PubMed  Google Scholar 

  111. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125:301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.

    Article  CAS  PubMed  Google Scholar 

  113. Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, et al. Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development. 2010;137:4159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ortega I, Wong DH, Villanueva JA, Cress AB, Sokalska A, Stanley SD, et al. Effects of resveratrol on growth and function of rat ovarian granulosa cells. Fertil Steril. 2012;98:1563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Moraloglu O, Engin-Ustun Y, Tonguc E, Var T, Tapisiz OL, Ergun H, et al. The effect of resveratrol on blood pressure in a rat model of preeclampsia. J Matern Fetal Neonatal Med. 2012;25:845–8.

    Article  CAS  PubMed  Google Scholar 

  116. Bourque SL, Dolinsky VW, Dyck JR, Davidge ST. Maternal resveratrol treatment during pregnancy improves adverse fetal outcomes in a rat model of severe hypoxia. Placenta. 2012;33:449–52.

    Article  CAS  PubMed  Google Scholar 

  117. Wong DH, Villanueva JA, Cress AB, Sokalska A, Ortega I, Duleba AJ. Resveratrol inhibits the mevalonate pathway and potentiates the antiproliferative effects of simvastatin in rat theca-interstitial cells. Fertil Steril. 2011;96:1252–8.

    Article  CAS  PubMed  Google Scholar 

  118. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.

    Article  CAS  PubMed  Google Scholar 

  119. Murase T, Misawa K, Haramizu S, Minegishi Y, Hase T. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab. 2010;299:E266–75.

    CAS  PubMed  Google Scholar 

  120. Han CY, Ki SH, Kim YW, Noh K, Leeda Y, Kang B, et al. Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxid Redox Signal. 2011;14:187–202.

    Article  CAS  PubMed  Google Scholar 

  121. Chinnakannu K, Chen D, Li Y, Wang Z, Dou QP, Reddy GP, et al. Cell cycle-dependent effects of 3,3'-diindolylmethane on proliferation and apoptosis of prostate cancer cells. J Cell Physiol. 2009;219:94–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Secor E, Hardie G, K M, Froment P, Louden E, Bonick A et al. AMPK agonists in diet supplements and pharma mediate wide-ranging somatic and reproductive effects. . eCAM 2016;Submitted.

  123. Yang L, Sha H, Davisson RL, Qi L. Phenformin activates the unfolded protein response in an AMP-activated protein kinase (AMPK)-dependent manner. J Biol Chem. 2013;288:13631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sakamoto K, Goransson O, Hardie DG, Alessi DR. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab. 2004;287:E310–7.

    Article  CAS  PubMed  Google Scholar 

  125. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11:554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Jose Cibelli, Michael Diamond, and Erica Louden for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bolnick.

Ethics declarations

Funding

DAR and EEP from the Office of the Vice President for Research at Wayne State University, from the REI fellows’ fund (AB), and from the funding of the Mary Iacobell and Kamran Moghissi Endowed Chairs.

Additional information

Capsule

Drugs metformin and aspirin and diet supplement BR-DIM cause AMPK-dependent potency loss and decrease embryonic development from two-cell to blastocyst stage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolnick, A., Abdulhasan, M., Kilburn, B. et al. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet 33, 1027–1039 (2016). https://doi.org/10.1007/s10815-016-0735-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0735-z

Keywords

Navigation