Skip to main content

Advertisement

Log in

Comparison of 2, 5, and 20 % O2 on the development of post-thaw human embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study is to investigate the effect of 2, 5, and 20 % O2 on post-thaw day 3 human embryo culture until blastocyst stage.

Methods

One hundred fifty-five day 3 human embryos were used. One hundred twenty out of 155 embryos were recovered after thawing. Surviving embryos were distributed into 2, 5, or 20 % O2 groups and cultured for 2.5 days. At the end of culture, blastocyst formation was assessed, and then, embryos were collected for RT-qPCR or immunofluorescence analysis.

Results

Using visible blastocoel to define blastocyst formation, 58.7 % (27/46) of surviving day 3 embryos formed blastocyst at 2 % O2, 63.6 % (28/44) at 5 % O2, and 66.7 % (20/30) at 20 % O2. The difference in blastocyst formation rates was not significant. Average blastocyst cell number was 119.44 ± 11.64 at 2 % O2, 142.55 ± 22.47 at 5 % O2, and 97.29 ± 14.87 at 20 % O2. Average apoptotic rate was 4.7 % ± 0.4 % for blastocyst formed at 2 % O2, 3.5 % ± 0.7 % at 5 % O2, and 5.8 % ± 1.1 % at 20 % O2. Apoptosis rate was significantly lower for blastocysts formed at 5 % O2 (p < 0.05). Compared with gene expression levels at 5 % O2, which were arbitrarily set as “1,” 20 % O2 is associated with significantly higher expression of BAX (2.14 ± 0.47), G6PD (2.92 ± 1.06), MnSOD (2.87 ± 0.88), and HSP70.1 (8.68 ± 4.19). For all genes tested, no significant differences were found between 2 and 5 % O2.

Conclusion

The result suggests that development of cryopreserved human embryos from day 3 to blastocyst stage benefits from culture at 5 % O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bavister B. Oxygen concentration and preimplantation development. Reprod Biomed Online. 2004;9(5):484–6.

    Article  PubMed  Google Scholar 

  2. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44.e4.

    Article  PubMed  Google Scholar 

  3. Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, et al. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30(8):1073–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Los Santos MJ, Gamiz P, Albert C, Galan A, Viloria T, Perez S, et al. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100(2):402–7.

    Article  Google Scholar 

  5. Bahceci M, Ciray HN, Karagenc L, Ulug U, Bener F. Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: a prospective randomized study. Reprod Biomed Online. 2005;11(4):438–43.

    Article  PubMed  Google Scholar 

  6. Dumoulin JCM, Meijers CJJ, Bras M, Coonen E, Geraedts JPM, Evers JLH. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod. 1999;14(2):465–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kovacic B, Vlaisavljevic V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17(2):229–36.

    Article  CAS  PubMed  Google Scholar 

  8. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program dagger. Hum Reprod. 2009;24(2):300–7.

    Article  PubMed  Google Scholar 

  9. Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012 (7). doi:10.1002/14651858.Cd008950.Pub2.

  10. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.

    Article  CAS  PubMed  Google Scholar 

  11. Berthelot F, Terqui M. Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos. Reprod Nutr Dev. 1996;36(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  12. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool. 1978;206(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  13. Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, et al. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol. 2006;572(1):87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi Y, Hishinuma M, Matsui M, Tanaka H, Kanagawa H. Development of in vitro matured/fertilized bovine embryos in a chemically defined medium: influence of oxygen concentration in the gas atmosphere. J Vet Med Sci. 1996;58(9):897–902.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan YQ, Van Soom A, Coopman FO, Mintiens K, Boerjan ML, Van Zeveren A, et al. Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology. 2003;59(7):1585–96.

    Article  CAS  PubMed  Google Scholar 

  16. Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod. 2004;71(4):1108–19.

    Article  CAS  PubMed  Google Scholar 

  17. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Foote RH. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J Reprod Fertil. 1993;98(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  19. Leese HJ. Human embryo culture: back to nature. J Assist Reprod Genet. 1998;15(8):466–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF. The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil Steril. 1976;27(3):304–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ottosen LD, Hindkaer J, Husth M, Petersen DE, Kirk J, Ingerslev HJ. Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod Biomed Online. 2006;13(3):380–5.

    Article  PubMed  Google Scholar 

  22. Diaz S, Ortiz ME, Croxatto HB. Studies on the duration of ovum transport by the human oviduct. III. Time interval between the luteinizing hormone peak and recovery of ova by transcervical flushing of the uterus in normal women. Am J Obstet Gynecol. 1980;137(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  23. Liu HC, He ZY, Mele CA, Veeck LL, Davis O, Rosenwaks Z. Expression of apoptosis-related genes in human oocytes and embryos. J Assist Reprod Genet. 2000;17(9):521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wrenzycki C, Herrmann D, Carnwath JW, Niemann H. Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol Reprod Dev. 1999;53(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  25. Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology. 2000;53(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  26. Balasubramanian S, Son WJ, Kumar BM, Ock SA, Yoo JG, Im GS, et al. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology. 2007;68(2):265–75.

    Article  CAS  PubMed  Google Scholar 

  27. Rizos D, Gutierrez-Adan A, Moreira P, O’Meara C, Fair T, Evans AC, et al. Species-related differences in blastocyst quality are associated with differences in relative mRNA transcription. Mol Reprod Dev. 2004;69(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wrenzycki C, Herrmann D, Keskintepe L, Martins Jr A, Sirisathien S, Brackett B, et al. Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod. 2001;16(5):893–901.

    Article  CAS  PubMed  Google Scholar 

  29. Rizos D, Lonergan P, Boland MP, Arroyo-Garcia R, Pintado B, de la Fuente J, et al. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod. 2002;66(3):589–95.

    Article  CAS  PubMed  Google Scholar 

  30. Edgar DH, Bourne H, Speirs AL, McBain JC. A quantitative analysis of the impact of cryopreservation on the implantation potential of human early cleavage stage embryos. Hum Reprod. 2000;15(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  31. Cutting R, Morroll D, Roberts SA, Pickering S, Rutherford A, Bfs, et al. Elective single embryo transfer: guidelines for practice British Fertility Society and Association of Clinical Embryologists. Hum Fertil (Camb). 2008;11(3):131–46.

    Article  Google Scholar 

  32. Gardner DK, Schoolcraft WB. A randomized trial of blastocyst culture and transfer in in-vitro fertilization: reply. Hum Reprod. 1999;14(6):1663A.

    Article  PubMed  Google Scholar 

  33. Abruzzese RV, Fekete RA. Single cell gene expression analysis of pluripotent stem cells. Methods Mol Biol. 2013;997:217–24.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Smyth P, Cahill S, Denning K, Flavin R, Aherne S, et al. Improved RNA quality and TaqMan pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials. BMC Biotechnol. 2008;8:10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, et al. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev. 2008;22(19):2692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Peer G, Mestdagh P, Vandesompele J. Accurate RT-qPCR gene expression analysis on cell culture lysates. Sci Rep. 2012;2:222.

    PubMed  PubMed Central  Google Scholar 

  37. Duran EM, Shapshak P, Worley J, Minagar A, Ziegler F, Haliko S, et al. Presenilin-1 detection in brain neurons and FOXp3 in peripheral blood mononuclear cells: normalizer gene selection for real time reverse transcriptase PCR using the deltadeltaCt method. Front Biosci. 2005;10:2955–65.

    Article  CAS  PubMed  Google Scholar 

  38. Pfister C, Pfrommer H, Tatagiba MS, Roser F. Detection and quantification of farnesol-induced apoptosis in difficult primary cell cultures by TaqMan protein assay. Apoptosis. 2013;18(4):452–66.

    Article  CAS  PubMed  Google Scholar 

  39. Byattsmith JG, Leese HJ, Gosden RG. An investigation by mathematical modeling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod. 1991;6(1):52–7.

    CAS  Google Scholar 

  40. Baltz JM, Biggers JD. Oxygen transport to embryos in microdrop cultures. Mol Reprod Dev. 1991;28(4):351–5.

    Article  CAS  PubMed  Google Scholar 

  41. Clark AR, Stokes YM, Lane M, Thompson JG. Mathematical modelling of oxygen concentration in bovine and murine cumulus-oocyte complexes. Reproduction. 2006;131(6):999–1006.

    Article  CAS  PubMed  Google Scholar 

  42. Saibil HR. Biochemistry. Machinery to reverse irreversible aggregates. Science. 2013;339(6123):1040–1.

    Article  CAS  PubMed  Google Scholar 

  43. Riley JK, Moley KH. Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction. 2006;131(5):823–35.

    Article  CAS  PubMed  Google Scholar 

  44. Heilig C, Brosius F, Siu B, Concepcion L, Mortensen R, Heilig K, et al. Implications of glucose transporter protein type 1 (GLUT1)-haplodeficiency in embryonic stem cells for their survival in response to hypoxic stress. Am J Pathol. 2003;163(5):1873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dan-Goor M, Sasson S, Davarashvili A, Almagor M. Expression of glucose transporter and glucose uptake in human oocytes and preimplantation embryos. Hum Reprod. 1997;12(11):2508–10.

    Article  CAS  PubMed  Google Scholar 

  46. Kind KL, Collett RA, Harvey AJ, Thompson JG. Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev. 2005;70(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  47. Wrenzycki C, Herrmann D, Niemann H. Timing of blastocyst expansion affects spatial messenger RNA expression patterns of genes in bovine blastocysts produced in vitro. Biol Reprod. 2003;68(6):2073–80.

    Article  CAS  PubMed  Google Scholar 

  48. Bloor DJ, Wilson Y, Kibschull M, Traub O, Leese HJ, Winterhager E, et al. Expression of connexins in human preimplantation embryos in vitro. Reprod Biol Endocrinol. 2004;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Houghton FD. Role of gap junctions during early embryo development. Reproduction. 2005;129(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  50. Brison DR, Leese HJ. Blastocoel cavity formation by preimplantation rat embryos in the presence of cyanide and other inhibitors of oxidative phosphorylation. J Reprod Fertil. 1994;101(2):305–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou S, Xie Y, Puscheck EE, Rappolee DA. Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta. 2011;32(6):475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xie Y, Zhou S, Jiang Z, Dai J, Puscheck EE, Lee I, et al. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res. 2014;13(3 Pt A):478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Houghton FD. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation. 2006;74(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  54. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102(13):4783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online. 2010;21(3):402–10.

    Article  CAS  PubMed  Google Scholar 

  56. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25(3):613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Yuliang Liu (BS) and Yanhong Zeng (BS) for the technical support, Baomin Lu (BS) for the preparation of culture medium, Dr Tao Li for the advice on experimental design, and performance, and to Drs Husam Abu-Soud, Maik Huttemann, Mark Kibschull, and Michael Diamond for the analysis and comments on the manuscript as well as Rappolee lab members Drs Quanwen Li and Mohammed Abdulhasan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canquan Zhou.

Ethics declarations

Written informed consent was obtained from all participants before the usage of their embryos. The institutional review board (IRB) of the First Affiliated Hospital of Sun Yat-Sen University approved the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This research was supported by grants from National Basic Research Program of China (No. 2012CB947604), Science and Information Technology of Guangzhou (No. 201300000097), DAR and EEP from the Office of the Vice President for Research at Wayne State University, and from the funding of the Mary Iacobelli Endowed Chair.

Additional information

Capsule The result suggests that development of cryopreserved human embryos from day 3 to blastocyst stage benefits from culture at 5 % O2.

Yu Yang and Yanwen Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, Y., Ding, C. et al. Comparison of 2, 5, and 20 % O2 on the development of post-thaw human embryos. J Assist Reprod Genet 33, 919–927 (2016). https://doi.org/10.1007/s10815-016-0693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0693-5

Keywords

Navigation