Skip to main content
Log in

A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine whether the new formulation of vitrification solutions containing a combination of hydroxypropyl cellulose (HPC) and trehalose does not affect outcomes in comparison with using conventional solutions made of serum substitute supplement (SSS) and sucrose.

Methods

Ovum donation cycles were retrospectively compared regarding the solution used for vitrification and warming of human oocytes. The analysis included 218 cycles (N = 2532 oocytes) in the study group (HPC + trehalose) and 214 cycles (N = 2353 oocytes) in the control group (SSS + sucrose).

Results

No statistical differences were found in ovarian stimulation parameters and baseline characteristics of donors and recipients. The survival rate was 91.3 % (95 % confidence interval (CI) = 89.8–92.9) in the HPC + trehalose group vs. 92.1 % (95 % CI = 90.4–93.7) in the SSS + sucrose group (NS). The implantation rate (42.8 %, 95 % CI = 37.7–47.9 vs. 41.2 %, 95 % CI = 36.0–46.4), clinical pregnancy rate (CPR) per transfer (60.7 %, 95 % CI = 53.9–67.5 vs. 56.4 %, 95 % CI = 49.3–63.5), and ongoing pregnancy rate (OPR) per transfer (48.5 %, 95 % CI = 41.5–55.5 vs. 46.3 %, 95 % CI = 39.2–53.4) were similar for patients who received either HPC + trehalose-vitrified oocytes or SSS + sucrose-vitrified oocytes. Statistical differences were found when analyzing blastocyst rate both per injected oocyte (30.2 %, 95 % CI = 28.3–32.1 vs. 24.1 %, 95 % CI = 22.3–25.9) and per fertilized oocyte (40.8 %, 95 %CI = 38.5–43.1 vs. 33.2 %, 95 % CI = 30.8–35.5) (P < 0.0001). Delivery rate was comparable between groups (37.2 %, 95 % CI = 30.8–46.6 vs. 36.9 %, 95 % CI = 30.4–43.4; NS).

Conclusions

Our data demonstrate that HPC and trehalose are suitable and safe substitutes for serum and sucrose. Therefore, the new commercial media can be used efficiently in the vitrification of human oocytes avoiding viral and endotoxin contamination risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89:1657–64.

    Article  PubMed  Google Scholar 

  2. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, et al. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25:66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25:2239–46.

    Article  PubMed  Google Scholar 

  4. Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM. Oocyte cryopreservation as a fertility preservation measure for cancer patients. Reprod Biomed Online. 2011;23:323–33.

    Article  CAS  PubMed  Google Scholar 

  5. Cobo A, Domingo J, Perez S, Crespo J, Remohi J, Pellicer A. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol. 2008;10:268–73.

    Article  CAS  PubMed  Google Scholar 

  6. Stoop D, Nekkebroeck J, Devroey P. A survey on the intentions and attitudes towards oocyte cryopreservation for non-medical reasons among women of reproductive age. Hum Reprod. 2011;26:655–61.

    Article  CAS  PubMed  Google Scholar 

  7. Cobo A, Garrido N, Crespo J, Jose R, Pellicer A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online. 2012;24:424–32.

    Article  CAS  PubMed  Google Scholar 

  8. Song WY, Sun YP, Jin HX, Xin ZM, Su YC, Chian RC. Clinical outcome of emergency egg vitrification for women when sperm extraction from the testicular tissues of the male partner is not successful. Syst Biol Reprod Med. 2011;57:210–3.

    Article  PubMed  Google Scholar 

  9. Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.

    Article  CAS  PubMed  Google Scholar 

  10. Herrero L, Pareja S, Losada C, Cobo AC, Pellicer A, Garcia-Velasco JA. Avoiding the use of human chorionic gonadotropin combined with oocyte vitrification and GnRH agonist triggering versus coasting: a new strategy to avoid ovarian hyperstimulation syndrome. Fertil Steril. 2011;95:1137–40.

    Article  CAS  PubMed  Google Scholar 

  11. Seki S, Mazur P. Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 degrees c in dilutions of a standard vitrification solution. PLoS One. 2012;7:e36058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313:573–5.

    Article  CAS  PubMed  Google Scholar 

  13. Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet. 1995;12:354–60.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue F. Hydroxypropyl cellulose as a macromolecular supplement for cryopreservation of bovine oocytes and blastocysts and human oocytes. Low Temp Med. 2012;38.

  15. Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol. 1993;8:205–10.

    Article  CAS  PubMed  Google Scholar 

  16. Behm CA. The role of trehalose in the physiology of nematodes. Int J Parasitol. 1997;27:215–29.

    Article  CAS  PubMed  Google Scholar 

  17. Hengherr S, Heyer AG, Kohler HR, Schill RO. Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J. 2008;275:281–8.

    Article  CAS  PubMed  Google Scholar 

  18. Vanin S, Bubacco L, Beltramini M. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. Cryo Lett. 2008;29:485–91.

    CAS  Google Scholar 

  19. Weber AP, Horst RJ, Barbier GG, Oesterhelt C. Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol. 2007;256:1–34.

    Article  CAS  PubMed  Google Scholar 

  20. McWilliams RB, Gibbons WE, Leibo SP. Osmotic and physiological responses of mouse zygotes and human oocytes to mono- and disaccharides. Hum Reprod. 1995;10:1163–71.

    CAS  PubMed  Google Scholar 

  21. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod. 2009;80:70–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Honadel TE, Killian GJ. Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology. 1988;25:331–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XB, Li K, Yau KH, Tsang KS, Fok TF, Li CK, et al. Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic-SCID repopulating cells. Transfusion. 2003;43:265–72.

    Article  CAS  PubMed  Google Scholar 

  24. Bellver J, Ayllon Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93:447–54.

    Article  PubMed  Google Scholar 

  25. Soares SR, Troncoso C, Bosch E, Serra V, Simon C, Remohi J, et al. Age and uterine receptiveness: predicting the outcome of oocyte donation cycles. J Clin Endocrinol Metab. 2005;90:4399–404.

    Article  CAS  PubMed  Google Scholar 

  26. Ardoy M, Calderón G, Arroyo G, Cuadros J, Figueroa M, Herrer R. ASEBIR criteria for the morphological evaluation of human oocytes, early embryos and blastocysts. ASEBIR clinical embryology papers. 2008.

  27. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  28. Gardner DKSW. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Toward reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon Press; 1999.

    Google Scholar 

  29. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92:1520–4.

    Article  CAS  PubMed  Google Scholar 

  30. Bonduelle M, Liebaers I, Deketelaere V, Derde MP, Camus M, Devroey P, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;17:671–94.

    Article  PubMed  Google Scholar 

  31. Laverge H, De Sutter P, Desmet R, Van der Elst J, Dhont M. Prospective randomized study comparing human serum albumin with fetal cord serum as protein supplement in culture medium for in-vitro fertilization. Hum Reprod. 1997;12:2263–6.

    Article  CAS  PubMed  Google Scholar 

  32. Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization (IVF) using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf. 1986;3:215–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kruger TF, Stander FS, Smith K, Van der Merwe JP, Lombard CJ. The effect of serum supplementation on the cleavage of human embryos. J In Vitro Fert Embryo Transf. 1987;4:10–2.

    Article  CAS  PubMed  Google Scholar 

  34. Ogawa T, Marrs RP. The effect of protein supplementation on single-cell mouse embryos in vitro. Fertil Steril. 1987;47:156–61.

    CAS  PubMed  Google Scholar 

  35. Isobe T, Ikebata Y, Onitsuka T, Do LT, Sato Y, Taniguchi M, et al. Cryopreservation for bovine embryos in serum-free freezing medium containing silk protein sericin. Cryobiology. 2013;67:184–7.

    Article  CAS  PubMed  Google Scholar 

  36. Alberda AT, van Os HC, Zeilmaker GH, Rothbarth PH, Heijtink RA, Schalm SW. Hepatitis B virus infection in women treated with in-vitro fertilization. Ned Tijdschr Geneeskd. 1989;133:20–5.

    CAS  PubMed  Google Scholar 

  37. Gardner DK. Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol Int. 1994;18:1163–79.

    Article  CAS  PubMed  Google Scholar 

  38. Menezo Y, Testart J, Perrone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42:750–5.

    CAS  PubMed  Google Scholar 

  39. Adler A, Reing AM, Bedford JM, Alikani M, Cohen J. Plasmanate as a medium supplement for in vitro fertilization. J Assist Reprod Genet. 1993;10:67–71.

    Article  CAS  PubMed  Google Scholar 

  40. Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61:714–9.

    CAS  PubMed  Google Scholar 

  41. Desai NN, Sheean LA, Martin D, Gindlesperger V, Austin CM, Lisbonna H, et al. Clinical experience with synthetic serum substitute as a protein supplement in IVF culture media: a retrospective study. J Assist Reprod Genet. 1996;13:23–31.

    Article  CAS  PubMed  Google Scholar 

  42. Meintjes M, Chantilis SJ, Ward DC, Douglas JD, Rodriguez AJ, Guerami AR, et al. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24:782–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T. A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil. 1990;89:91–7.

    Article  CAS  PubMed  Google Scholar 

  44. Skaer HB, Franks F, Asquith MH, Echlin P. Polymeric cryoprotectants in the preservation of biological ultrastructure. III. Morphological aspects. J Microsc. 1977;110:257–70.

    Article  CAS  PubMed  Google Scholar 

  45. Gardner DK, Rodriegez-Martinez H, Lane M. Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum Reprod. 1999;14:2575–80.

    Article  CAS  PubMed  Google Scholar 

  46. Bungum M, Humaidan P, Bungum L. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4:233–6.

    Article  CAS  PubMed  Google Scholar 

  47. Kuwayama M. Efficiency of non-protein solutions using hydroxypropyl cellulose on survival of bovine and human oocytes and embryos after vitrification. Fertil Steril. 2013;10:S174.

    Article  Google Scholar 

  48. Mori C, Yabuuchi A, Ezoe K, Murata N, Takayama Y, Okimura T, et al. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod Biomed Online. 2015;30:613–21.

    Article  CAS  PubMed  Google Scholar 

  49. Golovina EA, Golovin AV, Hoekstra FA, Faller R. Water replacement hypothesis in atomic detail—factors determining the structure of dehydrated bilayer stacks. Biophys J. 2009;97:490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the clinical embryologists and laboratory technicians of IVI, Valencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cobo.

Additional information

Capsule Our data demonstrate that HPC and trehalose are suitable and safe substitutes for serum and sucrose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coello, A., Campos, P., Remohí, J. et al. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J Assist Reprod Genet 33, 413–421 (2016). https://doi.org/10.1007/s10815-015-0633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0633-9

Keywords

Navigation